Lista de probleme 615

Filtrare

Dificultate

Operații intrare/ieșire


Etichete

Prin fibosir(N) înţelegem un şir construit prin adăugarea la sfârşit (concatenare) a primilor N termeni nenuli ai şirul Fibonacci definit astfel:

  • F1=1
  • F2=1
  • FN = FN-1 + FN-2

Pentru N valoare naturală dată, să se elimine din fibosir-ul construit M secvenţe disjuncte de lungime K fiecare, astfel încât numărul format din cifrele rămase în fiboşir să fie maxim.

#704 smsm

Notăm X ca fiind mulţimea numerelor naturale care se pot scrie sub forma 2a*3b. Se consideră doar acele numere pentru care 0 ≤ a ≤ D şi 0 ≤ b ≤ T, unde D şi T sunt date. Pentru un număr v din X, considerăm asociatul lui v ca fiind valoarea (C*P)%Q unde C este ultima cifră a lui v iar P şi Q se dau (de exemplu, pentru P = 1 şi Q = 10 asociatul lui 21*32 este 8).

Se cere determinarea valorii maxime a sumei asociatelor elementelor unei submulţimi a lui X astfel încât oricare ar fi două elemente u şi v din submulţimea respectivă, u nu divide pe v şi nici v nu divide pe u.

Se dă un șir de numere întregi a[0],a[1],..a[N-1]. Fiecare valoare a[i] reprezintă mărimea maximă a unui salt ce poate fi efectuat din pozitia i. Din poziţia i, se poate ajunge printr-un salt la oricare din poziţiile i+1, i+2,…, i+a[i], dacă a[i] este pozitiv, iar dacă a[i] este negativ se poate ajunge la oricare din poziţiile i-1,i-2,…, i+a[i].

Trebuie să se ajungă, prin salturi, de la poziția 0 la o poziție mai mare decât N-1 (în afara vectorului, la dreapta).

Scrieți un program care să determine numărul minim de salturi necesare pentru a ajunge de la poziția 0 la o poziție mai mare decât N-1.

#694 sam

Aranjăm primele N numere naturale nenule sub forma unui șir A[1], A[2], ..., A[N].

Fie X[1], X[2],...,X[K] (K ≥ 3), un subșir al șirului A. Numim extrem local al subșirului X termenul din mijlocul unei secvențe de lungime trei din subșir, X[i-1], X[i], X[i+1], cu proprietatea: X[i-1]<X[i]>X[i+1], 1<i<K sau X[i-1]>X[i]<X[i+1], 1<i<K.

Vom nota cu nrex(X) numărul de extreme locale ale subșirului X.

Spunem că un subșir X[1], X[2],...,X[K] (K≥2) al șirului A este subșir alternant dacă nrex(X)=K-2, adică exceptând primul și ultimul termen din subșir toți ceilalți termeni sunt extreme locale ale subșirului X.

Dintre toate subșirurile alternante ale șirului A ne interesează cele de lungime maximă pe care le vom numi subșiruri alternante maximale.

Cunoscând N și tabloul A se cere să se determine restul obținut la împărțirea dintre numărul M al subșirurilor alternante maximale ale tabloului A și numărul 1000003.

#692 robot

Studenţii Facultăţii de Informatică din cadrul Universităţii din Cluj, au conceput roboţi care şterg praful, plantează copaci, pun gresie, servesc masa, etc.

Botezat „Rosie“, robotul care şterge praful are două braţe ( S – stâng şi D – drept) pe care sunt montate nişte perii ce sunt învârtite cu ajutorul unui motoraş. Braţul robotului este programat să se poziţioneze în dreptul unei suprafeţe, periile învârtite de motoraş parcurg suprafaţa ştergând în acest fel praful de pe ea.

Pentru o demonstraţie, robotul este aşezat în faţa unei etajere cu N rafturi numerotate în ordine, de jos în sus, cu numere de la 1 la N. Braţul stâng ( S ) al robotului este poziţionat în dreptul primului raft iar celălat braţ ( D ) în dreptul celui de-al K-lea raft.

Pentru ştergerea prafului, deplasarea braţelor robotului este programată astfel:

  • fiecare braţ se deplasează doar de jos în sus, de la raftul în dreptul căruia este poziţionat la un moment dat, la raftul situat imediat deasupra acestuia;
  • din minut în minut, se deplasează doar unul din braţe, se poziţionează în dreptul raftului corespunzător şi şterge praful de pe acesta;
  • dacă ambele braţe ajung în dreptul aceluiaşi raft, atunci robotul se blochează şi demonstraţia se încheie fără succes.

Ştiind că demonstraţia se termină în momentul în care braţul drept ( D ) al robotului a ajuns pe ultimul raft al etajerei, scrieţi un program care calculează numărul M de modalităţi diferite în care poate fi programat robotul pentru a asigura succesul demonstraţiei.

Programul va afişa restul împărţirii numărului M la 64997.

O tablă pătratică este formată din N x N celule pătrate, identice ca dimensiune, grupate pe N linii şi N coloane numerotate de la 1 la N. Din oricare celulă aflată la linia i şi coloana j, se poate face o deplasare doar spre celula vecină (i + 1, j) sau (i, j + 1), dacă aceasta există. În interiorul a M celule ale acestei matrice s-a așezat câte un jeton.

Numim drum pe această tablă, orice succesiune de celule parcurse conform regulii de deplasare descrisă anterior. Lungimea unui asemenea drum este egală cu numărul de celule parcurse.

Cunoscând dimensiunea tablei N, numărul total de jetoane m şi două numere naturale L şi K, să se determine un număr d, reprezentând numărul de drumuri distincte modulo 31607 de lungime L care pornesc din celula (1, 1) şi care conţin fiecare câte K jetoane.

Domino este un joc care utilizează N piese speciale, de formă dreptunghiulară. Pe prima şi pe a doua jumătate a fiecărei piese este inscripţionată câte o cifră de la 1 la 9.

În timpul jocului cele N piese se așează pe tabla joc astfel încât toate cifrele să fie aliniate pe orizontală, iar jucătorul poate acţiona asupra unei piese în două moduri:

  • ELIMINARE – piesa este înlăturată de pe tabla de joc;
  • ROTIRE – piesa este rotită cu 180 grade, păstrându-și ordinea relativă în raport cu celelalte piese.

Ştiind că în timpul jocului pot fi efectuate cel mult K1 ROTIRI şi exact K2 ELIMINĂRI de piese, determinaţi cel mai mare număr care se poate forma prin scrierea în ordine, de la stânga la dreapta, a cifrelor de pe piesele rămase pe tabla de joc, în urma efectuării operaţiilor permise.

Având la dispoziție n cifre, să se construiască k numere, astfel încât suma lor să fie minimă.

#683 ssce

Avem la dispoziţie un şir X cu n numere naturale date într-o bază b. Trebuie determinat un subşir al şirului dat care are următoarele proprietăţi:

  • Fiecare cifră a bazei b: 0, 1, …, b – 1, apare, în total, în numerele acestui subşir de acelaşi număr de ori.
  • În orice prefix al subşirului determinat, diferenţa dintre numerele de apariţii ale oricăror 2 cifre cuprinse între 0 şi b-1 este cel mult k (un prefix al subşirului determinat reprezintă o secvenţă de valori din subşir începând cu primul element al subşirului).

Determinaţi numărul maxim de elemente ale unui astfel de subşir.

Pe axa reală există N orașe, numerotate cu numerele 1, 2, 3, …, N. Deși într-o lume unidimensională lucrurile par a fi mult mai simple, totuși majoritatea locuitorilor sunt nemulțumiți de distanțele mari parcurse între orașe în scopul rezolvării diferitelor probleme. Astfel, pentru o mai bună organizare, s-a supus la vot și s-a decis promovarea a cel mult K orașe la rangul de centru adminstrativ. Centrele trebuie amplasate într-un mod isteț, în așa fel încât distanța maximă calculată dintre distanțele de la fiecare oraș la cel mai apropiat centru administrativ să fie cât mai mică. Întrucât costurile de administrare ale unui astfel de centru sunt ridicate, se dorește să se amplaseze un număr cât mai mic de centre administrative astfel încât distanța maximă să nu fie modificată.