Lista de probleme 2

Filtrare

Dificultate

Operații intrare/ieșire


Etichete

Balaurul Arhirel se decide să înveţe biologie, aşa că doreşte să cumpere manualul de clasa a X-a. Din păcate, acesta nu se mai găsește pe piaţă, dar Balaurul reuşeşte să găsească o copie la un prieten. După ce începe să citească, Balaurul Arhirel observă că există greşeli în copia prietenului, iar într-un impuls de energie, se hotărăşte să corecteze manualul. El are la dispoziţie un dicţionar de M cuvinte dintre care trebuie să extragă variante pentru cuvântul greşit. Asupra cuvântului greşit balaurul poate să facă următoarele schimbări în așa fel încât acesta să ajungă la o variantă din dicționar:
– poate șterge o literă;
– poate insera o literă;
– poate schimba o literă în altă literă.
Totuși, Balaurul Arhirel este leneş, aşa că nu doreşte să opereze mai mult de K schimbări în cuvântul greșit pentru a-l aduce la o formă corectă (existentă în dicționar).
Ajutaţi-l pe Balaurul Arhirel să afle care dintre cuvintele din dicţionar ar putea fi variante ale cuvântului greşit.

#2191 lant2

Ion este un lingvist pasionat. Recent el a descoperit un text scris într-o limbă necunoscută. Textul este scris pe mai multe linii şi este format din cuvinte scrise cu litere mici din alfabetul latin, separate prin spaţii sau/şi semne de punctuaţie (,:;.!?-). Ion a fost frapat că există multe similitudini între cuvintele din text. Fiind foarte riguros, Ion definește similitudinea a două cuvinte după cum urmează. Fie c1 şi c2 două cuvinte. Cuvântul c1 poate fi obţinut din cuvântul c2 printr-o succesiune de operaţii elementare. Operaţiile elementare ce pot fi folosite sunt:

  • move(c1, c2) – Mută primul caracter din c1 la sfârşitul cuvântului c2 (de exemplu, dacă c1="alba" şi c2="neagra", după efectuarea operaţiei move(c1, c2), c1 va fi "lba", iar c2 va fi "neagraa")
  • insert(c1, x) – Inserează caracterul x la începutul lui c1 (de exemplu, dacă c1="alba" şi x='b', după executarea operaţiei insert(c1,x), c1 va fi "balba")
  • delete(c1) – Şterge primul caracter din c1 (de exemplu, dacă c1="alba", după executarea operaţiei delete(c1), c1 va fi "lba")

Definim similitudinea dintre c1 şi c2 ca fiind numărul minim de operații insert şi delete ce trebuie să fie executate pentru a transforma cuvântul c1 în cuvântul c2 (operațiile move nu se numără).
Fie c0 primul cuvânt din text. Începând cu c0 putem construi lanțuri de k-similitudine.
Un lanţ de k-similitudine este o succesiune de cuvinte distincte din text cu următoarele proprietăți:

  • dacă cuvântul x apare în lanţ înaintea cuvântului y, atunci prima apariţie a lui x în text precedă prima apariţie a lui y în text;
  • dacă x şi y sunt cuvinte consecutive în lanţ (în ordinea x y), atunci similitudinea dintre x şi y este mai mică sau egală decât k;
  • lanţul este maximal (adică nu putem adăuga încă un cuvânt la sfârşitul acestui lanţ, astfel încât să fie respectate proprietăţile precedente).

Scrieţi un program care să determine numărul de lanţuri de k-similitudine care încep cu c0.