Lista de probleme 7

Filtrare

Dificultate

Operații intrare/ieșire

Etichete

#1855 Heap

Se consideră o colecție de numere naturale, inițial vidă. Asupra ei se fac două tipuri de operații:

  • 1 x – valoarea x se adaugă în colecție;
  • 2 – cea mai mare valoare din colecție se afișează, apoi se elimină din colecție.

Dându-se un șir de m operații, să se afișeze în ordine rezultatele operațiilor de tip 2.

Se dă n și un sir cu n elemente, numere naturale. Folosind metoda HeapSort, să se sorteze crescător șirul și să se afișeze elementele sau, separate prin câte un spațiu.

#2012 TSM

TH, Seba, Șcuțu și Năstuț se joacă noul joc numit TSM. TSM are un sistem de tip multiplayer foarte interesant: se formează două echipe care se vor confrunta, una ce conține 4 jucători ce vor avea rol de apărători și alta ce conține un singur jucător cu rol de atacator (foarte necinstit). Mygo a auzit că cei 4 prieteni și-au făcut echipă, iar pe el nu l-au invitat, așa că decide să îi provoace la joc. Într-o rundă de joc acțiunile se petrec pe un câmp de luptă, inițial gol, iar apărătorii disting următoarele evenimente:

1 x : TH observă că Mygo a trimis pe câmpul de luptă un tanc de coeficient x și își anunță aliații.
2 K : Seba consideră că cel mai periculos tip de tanc aflat pe câmpul de luptă este cel cu al K – lea cel mai mic coeficient și îl afișează în consolă, pe un nou rând.
3 : Năstuț scrie în consolă, pe un nou rând, coeficientul cel mai mic al unui tanc aflat în momentul respectiv pe câmpul de luptă.
4 : Șcuțu trage cu tunul într-un tanc de coeficient egal cu ultimul scris de Seba în consolă și îl elimină.

#1117 Volum

K.L. 2.0 și-a dorit o piscină pe un grid A cu N linii și M coloane. Cum K.L. 2.0 nu a fost foarte inspirat, el a uitat să își niveleze terenul înainte de a construi piscina, astfel încât fiecare celulă de coordonate (i, j) a gridului are o înalțime Ai,j (1 ≤ i ≤ N și 1 ≤ j ≤ M). La un moment dat începe o ploaie puternică, care umple piscina cu apă. După terminarea ploii, K.L. 2.0 se întreabă câtă apă are în piscină.

Dintr-o celulă apa se varsă în celulele vecine cu care are o latură comună şi care au înălţimea strict mai mică decât celula curentă. Apa de pe marginea piscinei se scurge în exterior.

Pentru N, M și gridul A date, să se determine volumul de apă care a rămas în piscină.

#2169 cezar1

În Roma antică există n așezări senatoriale distincte, câte una pentru fiecare dintre cei n senatori ai Republicii. Așezările senatoriale sunt numerotate de la 1 la n, între oricare două așezări existând legături directe sau indirecte. O legătură este directă dacă ea nu mai trece prin alte așezări senatoriale intermediare. Edilii au pavat unele dintre legăturile directe dintre două așezări (numind o astfel de legătură pavată stradă), astfel încât între oricare două așezări senatoriale să existe o singură succesiune de străzi prin care se poate ajunge de la o așezare senatorială la cealaltă.
Toţi senatorii trebuie să participe la şedinţele Senatului. In acest scop, ei se deplasează cu lectica. Orice senator care se deplasează pe o stradă plăteşte 1 ban pentru că a fost transportat cu lectica pe acea stradă.

La alegerea sa ca prim consul, Cezar a promis că va dota Roma cu o lectică gratuită care să circule pe un număr de k străzi ale Romei astfel încât orice senator care va circula pe străzile respective, să poată folosi lectica gratuită fără a plăti. Străzile pe care se deplasează lectica gratuită trebuie să fie legate între ele (zborul, metroul sau teleportarea nefiind posibile la acea vreme).

În plus, Cezar a promis să stabilească sediul sălii de şedinţe a Senatului într-una dintre aşezările senatoriale aflate pe traseul lecticii gratuite. Problema este de a alege cele k străzi şi amplasarea sediului sălii de şedinţe a Senatului astfel încât, prin folosirea transportului gratuit, senatorii, în drumul lor spre sala de şedinţe, să facă economii cât mai însemnate. În calculul costului total de transport, pentru toţi senatorii, Cezar a considerat că fiecare senator va călători exact o dată de la aşezarea sa până la sala de şedinţe a Senatului.

Scrieţi un program care determină costul minim care se poate obţine prin alegerea adecvată a celor k străzi pe care va circula lectica gratuită şi a locului de amplasare a sălii de ședință a Senatului.

#2174 numar6

Presupunem că avem n numere prime notate a1, a2, ..., an sortate strict crescător. Formăm un șir strict crescător b ale cărui elemente sunt toţi multiplii acestor n numere prime astfel încât, multipli comuni apar o singură dată. Presupunem că numerotarea pozițiilor elementelor din șirul b începe tot cu 1. Scrieți un program care citește din fişierul de intrare valoarea lui n şi apoi cele n elemente ale şirului a, determină elementul de pe poziţia m din şirul b şi afişează în fişierul de ieşire valoarea acestuia.

#2450 ramen

Ai deschis recent un restaurant cu specific japonez, iar lucrurile nu merg grozav. Uneori clienții ajung să aștepte foarte mult mâncarea comandată, iar acum crezi că ai înțeles de ce se întâmplă acest lucru.
Restaurantul nu are mese, ci un singur bar foarte lung dotat cu o bandă rulantă care transportă porțiile de mâncare de la bucătărie la client. Barul are 500.000.000 de scaune numerotate în ordine crescătoare, scaunul 1 fiind cel mai apropiat de bucătărie. Uneori clienții fac noi comenzi. O comandă făcută la secunda T de către clientul aflat pe scaunul cu numărul P va ajunge instant la bucătărie. Prepararea mâncării va dura D secunde, iar apoi mâncarea va fi pusă pe bandă și va dura exact P secunde ca aceasta să ajungă la client. În acest timp, mâncarea va trece prin fața scaunelor 1, 2, … P - 1. Dacă dintr-un anumit motiv clientul nu își ridică mâncarea de pe bandă, aceasta va continua să se deplaseze. În caz contrar, clientul în cauză se așteaptă ca mâncarea să ajungă la scaunul său la secunda T + D + P.
Deocamdată restaurantul servește un singur fel de mâncare: ramen. Astfel, comenzile făcute de clienți ajung să fie ușor interschimbabile, iar aceștia se arată foarte deschiși la a profita de pe urma acestui fapt. Se cunosc următoarele:

  • Un client poate avea zero sau mai multe comenzi în așteptare.
  • Un client care are zero comenzi în așteptare este complet inactiv.
  • Numărul de comenzi în așteptare ale unui client care face o comandă la secunda T va crește cu o unitate exact la secunda T.
  • Un client care are în așteptare cel puțin o comandă va ridica de pe bandă prima porție de ramen care trece prin fața sa, indiferent dacă aceasta îi era destinată sau nu. Dacă va face acest lucru la momentul T, numărul său de comenzi în așteptare va scădea cu o unitate exact la momentul T.

Pentru a evalua impactul acestui obicei asupra timpilor de așteptare, ai obținut date despre toate comenzile date în ziua curentă. Îți propui să afli, pentru fiecare comandă următoarea valoare: dacă respectiva comandă este a NR-a făcută de clientul respectiv, care este secunda la care clientul în cauză va mânca pentru a NR-a oară?