Lista de probleme 9

Filtrare

Dificultate

Operații intrare/ieșire


Etichete

#1512 Mars

Se consideră un tablou unidimensional cu n elemente numere întregi, numerotate de la 1 la n, inițial toate nule. Asupra tabloului se fac m operații s d X cu semnificația: toate elementele cu indici cuprinși între s și d își măresc valoare cu X.

Să se afișeze tabloul după realizarea celor m operații.

#2383 plaja1

Primăria orașului Constanța reamenajează plaja din stațiunea Mamaia. Aceasta este reprezentată ca o zonă dreptunghiulară cu lățimea de a unități și lungimea de b unități. Pe plajă sunt trasate linii paralele cu laturile dreptunghiului astfel încât să formeze pătrate cu latura de o unitate, numite zone. Pe plajă se vor pune obiecte: umbrele și prosoape. Se consideră că dacă un obiect intră în interiorul unei zone, o ocupă în întregime. Se poziționează u umbrele de soare. Într-o zonă se poate așeza cel mult o umbrelă.

N turişti vin şi îşi aşează prosoapele pe plajă. Un prosop are formă dreptunghiulară şi va fi aşezat paralel cu laturile dreptunghiului. Turiştii îşi pot aşeza prosoapele pe zone libere sau peste prosoape deja aşezate. Un turist nu îşi poate aşeza însă prosopul pe plajă dacă suprafaţa acoperită de acesta include cel puţin o zonă în care se află o umbrelă.
M localnici au suprafeţe favorite pentru aşezarea prosoapelor. O suprafaţă favorită are forma unui dreptunghi cu laturile paralele cu laturile dreptunghiului care marchează plaja. După ce turiştii termină aşezarea prosoapelor, localnicii verifică dacă zonele din suprafaţa favorită sunt libere (neacoperite de prosoape aşezate de turişti sau de umbrele).

Scrieţi un program care să determine numărul de turişti care au reuşit să îşi aşeze prosoapele pe plajă, precum și numărul de localnici ale căror zone favorite sunt libere.

#1218 Teren

În satul vecin există un teren agricol de formă dreptunghiulară împărțit în N*M pătrate elementare identice, dispuse alăturat câte M pe fiecare rând şi câte N pe fiecare coloană. Rândurile sunt numerotate de la 1 la N, iar coloanele de la 1 la M. Un pătrat elementar situat în teren pe rândul R și coloana C este identificat prin coordonatele (R,C).

Suprafețe dreptunghiulare din teren (formate fiecare din unul sau mai multe pătrate elementare alăturate) sunt revendicate de T fermieri din sat, în calitate de moștenitori, pe baza actelor primite de la strămoșii lor. Pentru că au apărut și acte false, s-a constat că pot exista mai mulți fermieri care revendică aceleași pătrate elementare.

În cele T acte ale fermierilor, suprafețele dreptunghiulare sunt precizate fiecare prin câte două perechi de numere (X,Y) și (Z,U), reprezentând coordonatele primului pătrat elementar din colțul stânga-sus al suprafeței (rândul X și coloana Y), respectiv coordonatele ultimului pătrat elementar situat în colțul dreapta-jos al suprafeței (rândul Z și coloana U).

Scrieţi un program care să citească numerele naturale N, M, T, R, C apoi cele T perechi de coordonate (X,Y) și (Z,U) precizate în acte (corespunzătoare suprafețelor dreptunghiulare revendicate) și care să determine:

  1. numărul fermierilor care revendică pătratul elementar identificat prin coordonatele (R,C);
  2. numărul maxim de fermieri care revendică același pătrat elementar;
  3. numărul maxim de pătrate elementare ce formează o suprafață pătratică nerevendicată de niciun fermier.

#1233 Paint

Roberto are suflet de artist. El visează să ajungă într-o bună zi un pictor celebru, dar pentru moment își câştigă existența ca zugrav.

Roberto a primit sarcina de a zugrăvi un zid având lungimea n metri şi înălţimea un metru. Pentru aceasta are la dispoziţie m zile. În fiecare zi i, el acoperă cu un singur strat de vopsea o porţiune compactă de înălțime un metru și de lungime l[i] metri, începând de la distanţa d[i] metri faţă de capătul din stânga al zidului.

Roberto ştie din experienţă că fiecare porţiune de zid trebuie acoperită cu cel puţin K straturi de vopsea pentru ca stratul final de vopsea să aibă consistenţa dorită. Din nefericire, firea lui de artist nu i-a permis să-şi poată planifica munca în mod optim, astfel că la capătul celor m zile de efort, Roberto a constatat că zidul are porţiuni pe care le-a acoperit de mai mult de k ori şi alte porţiuni pe care le-a acoperit de mai puţin de k ori.

Pentru a recupera în proprii săi ochi dar mai ales în ochii şefului de echipă, el trebuie să afle mai întâi suprafaţa totală a tuturor porţiunilor de zid care mai trebuie zugrăvite.

Cunoscând lungimea zidului n, numărul de zile m şi porţiunile compacte pe care le zugrăveşte în fiecare zi, determinaţi suprafaţa totală a zidului care mai trebuie zugrăvită.

#1835 twoop

Se dă un șir de N elemente, numere întregi. Pe acest șir se aplică operații de două tipuri :

  • Tip 1: st dr val – elementele de pe pozițiile din intervalul [st, dr] cresc cu valoarea val
  • Tip 2: poz – să se afișeze valoarea elementului de pe poziția poz .
    Dându-se șirul de elemente și operațiile, aplicați operațiile pe șir.

Ajutați-l pe vrăjitorul Arpsod să găsească aria maximă unei suprafețe de înălțime maximă, după căderea ploilor de meteoriți.

Undeva, în deșertul Sahara, ilustrul biolog Sahraa Gaea a conceput și construit un sistem de irigații ingenios, sistem cu care își propune să irige o zonă deșertică dreptunghiulară bogată în nutrienți minerali. Zona deșertică este împărțită în N*M pătrate de latură unitate. În fiecare pătrat se află un dispozitiv de picurare ce asigură o anumită cantitate de apă în funcție de comanda primită de la centrul de control al sistemului.

Sistemul de irigare este astfel conceput încât să irige (ude), pe baza unor comenzi automatizate, parcele dreptunghiulare ale regiunii deșertice.

Orice parcelă are laturile paralele cu laturile zonei deșertice și este identificată prin coordonatele colțurilor stânga-sus (x1,y1), respectiv dreapta-jos (x2,y2). La fiecare comandă se specifică parcela care va fi udată și cantitatea de apă (exprimată în litri) cu care va fi irigat fiecare pătrat al acesteia.

Un pătrat al zonei deșertice devine fertil dacă acumulează cel puțin Q litri de apă.

Să se determine aria maximă a unei suprafețe conexe fertile. Prin aria unei suprafețe înțelegem numărul de pătrate ce compun suprafața. Orice două pătrate fertile care au o latură comună fac parte din aceeaşi suprafaţă conexă fertilă.

Tommy a descoperit bine-cunoscutul joc Minecraft, joc care este axat pe creativitate și construcție, permițând jucătorilor să construiască, folosind o multitudine de cuburi texturate, o lume tridimensională. Harta lumii lui Tommy este o suprafață pătrată, pe care sunt desenate pătrate egale, alăturate, ce pot fi albastre sau verzi. Fiecare pătrat albastru corespunde unui cub albastru și fiecare pătrat verde corespunde unui cub verde. Sursele de apă sunt reprezentate de pătrate de culoare albastră. Fiecare pătrat verde are atașat un cost, reprezentat de lungimea celui mai scurt drum până la o sursă de apă. Două pătrate alăturate aparțin aceluiași drum dacă au o latură comună. Drumul ajunge la o sursă de apă, dacă, ultimul pătrat de pe drum are o latură comună cu pătratul corespunzător sursei de apă. Lungimea drumului este reprezentată de numărul de pătrate care formează drumul. Costul unei suprafețe este reprezentat de suma costurilor pătratelor care formează suprafața.

Cunoscând harta ce corespunde lumii lui Tommy, să se determine:

  • numărul zonelor dreptunghiulare pe care poate construi casa în modul Supraviețuire;
  • aria suprafeței pe care-și construiește casa și costul acesteia în modul Creativ.