Lista de probleme 46

Filtrare

Dificultate

Operații intrare/ieșire


Etichete

Se dă un număr natural n. Să se determine numărul din intervalul [1,n] care are număr maxim de divizori.

Gigel a învăţat la matematică despre cel mai mic multiplu comun a două numere şi acum trebuie să determine pentru fiecare valoare x dintr-un set de valori date câte perechi ordonate de numere naturale (a,b) au cel mai mic multiplu comun x.

Se dă un număr natural nenul n. Să se construiască un șir strict crescător de lungime maximă a[i] cu proprietatea că:

  • fiecare element al șirului este divizor al lui n
  • a[i] este divizor al lui a[i+1]

#955 Miny

Fie N un număr natural nenul şi N numere naturale nenule: x1, x2,…, xN.
Fie P produsul acestor N numere, P=x1•x2•...•xN.

Scrieţi un program care să citească numerele N, x1, x2,…, xN şi apoi să determine:
a) cifra zecilor produsului P;
b) cel mai mic număr natural Y, pentru care există numărul natural K astfel încât YK=P.

Se citeşte un număr natural n. Să se afișeze factorii primi ai lui n în ordine crescătoare.

Se citeşte un număr natural n. Să se afişeze descompunerea în factori primi a lui n.

#2324 prim002

Anul 2017 tocmai s-a încheiat, iar nostalgicii suferă în tăcere deoarece acesta era număr prim. Dorel, un personaj întreprinzător, s-a gândit să afle pentru un număr natural n dat, care este cel mai mare divizor prim al acestuia.

#2312 guIT

Ghiţă s-a hotărât să plece de-acasă de Ignat, având nişte previziuni sumbre. Neavând bani, s-a gândit să-şi scoată un single de sezon, “guIT”. Din vânzarea lui a obţinut frumoasa sumă de n dolari. Pentru a câştiga un meniu vegetarian de Crăciun, trebuie să aflaţi suma numerelor prime din descompunerea lui n, ştiind că n este produs de trei numere prime distincte.

#1908 Fractii_Ired C++

Dându-se şirul de fracţii 1/N, 2/N, 3/N, ...,N/N, să se afle câte fracţii sunt ireductibile.

#971 Max

În zorii zilei, harnicele albinuţe se pregătesc să zboare la cules de nectar. În apropierea stupului, se află o grădină fermecată cu N flori, numerotate 1, 2,… N. Pentru fiecare floare se cunoaște numărul de petale.

Anumite flori din grădină pot fi flori capcană. O astfel de floare are un număr prim de petale. Dacă o albină s-ar aşeza pe corola florii capcană, atunci floarea i-ar fura o cantitate de nectar egală cu numărul ei de petale.

Alte flori pot fi florile abundenţei. Numărul de petale ale florii abundenţei are un număr impar de divizori. Dacă o albină s-ar aşeza pe corola unei astfel de flori, atunci ea i-ar dărui albinuţei o cantitate de nectar egală cu triplul numărului ei de petale.

Celelalte flori pot fi flori obişnuite. Dacă o albină s-ar aşeza pe corola unei flori obişnuite, atunci floarea i-ar dărui albinuţei o cantitate de nectar egală cu numărul ei de petale.

Regina stupului, le-a poruncit albinuţelor să adune cea mai mare cantitate de nectar care se poate culege din grădină, altfel … vor fi alungate din stup.

Scrieţi un program care să citească numerele naturale N și numărul de petale ale fiecărei flori şi care să determine cantitatea maximă C de nectar pe care albinuţele o pot aduna din grădina fermecată.