Soluții trimise

Rezumat problemă

pdigit

#1969

Fie a un număr natural scris în baza 10. Notăm cu b, baza minimă în care poate fi scris a. Astfel, dacă a=21756, atunci baza minimă în care acesta poate fi scris este b=8.
Definim cifra de control a numărului a scris în baza b, notată cu c=digit(a)b, ca fiind numărul de o cifră obținut prin adunarea în baza b a cifrelor numărului a. Dacă rezultatul obținut este de o cifră, atunci acesta reprezintă valoarea lui c, dacă nu, se aplică repetat asupra rezultatului procedeul de însumare a cifrelor în baza b până când se obține o cifră.

De exemplu:

  • c=digit(21756)8=digit(2+1+7+5+6)8=25, întrucât c>8 procedeul continuă
  • c=digit(25)8=digit(2+5)8=7.

Se consideră un interval închis [x,y]. Să se determine:

  • a – primul număr prim mai mare sau egal ca x
  • b – baza minimă în care poate fi scris numărul prim a
  • c – cifra de control a numărului prim a
  • n – numărul de numere prime din intervalul [x,y] ce pot fi scrise în baza b și au cifra de control egală cu c.

ID   Utilizator Problema Data încărcării Stare
ISolv3Problems 22 (iSolv3Problems) pdigit 10 Octombrie 2022, 21:57 Evaluare finalizată 100
Du-te sus!