Lista de probleme 212

Filtrare

Să se determine numărul de submulțimi nevide ale mulțimii {1, 2,..., n} cu proprietatea că oricare două elemente dintr-o submulțime au diferența în modul strict mai mare decât 1.

#4032 Zar1

În câte moduri se poate obține suma n aruncând cu zarul (În câte moduri poți să îl scrii pe n ca sumă de valori mai mici sau egale cu 6).

#4029 Depozit

Într-un depozit au fost așezate cutii identice, una după alta, eventual suprapuse, astfel încât numărul maxim de cutii suprapuse într-o stivă este N, iar între două stive cu același număr de cutii să existe cel puțin una cu mai multe cutii decât oricare dintre cele două. Considerăm că o stivă poate fi formată dintr-o singură cutie.

#3993 Targ

Luis este la târgul auto și dorește să-și cumpere un nou bolid, fiind Black Friday. Există n tipuri de bancnote (a[1], a[2], ..., a[n]). Acestea satisfac condițiile: a[1] < a[2] < ... < a[n]; a[i] este divizor al lui a[i+1].

Știind că bolidul costă x euro, determinați numărul minim de bancnote ce vor fi folosite pentru a efectua plata (numărul de bancnote este egal cu suma dintre numărul bancnotelor cu care plătește și numărul bancnotelor pe care le va primi rest).

#4033 Zar2

Dăm de n ori cu zarul și însumăm valorile care le obținem, care este probabilitatea ca răspunsul să fie în intervalul [a,b]?

Avem un poligon convex cu n laturi, pe fiecare dintre cele n vârfuri fiind scris un număr natural. Acesta se împarte în n-2 triunghiuri. Definim valoarea unui triunghi produsul valorilor celor 3 vârfuri, iar valoarea poligonului este suma valorilor celor n-2 triunghiuri. Determinați valoarea maximă pe care o poate avea poligonul, împărțindu-l în mod optim.

Se consideră o clădire de formă dreptunghiulară formată din n*m camere, dispuse pe n linii și m coloane. Intrarea în clădire este în camera de coordonate (1,1), iar ieșirea în camera de coordonate (n,m). Din orice cameră (i,j) se poate ajunge numai în camerele (i+1,j) sau (i,j+1). Determinați în câte moduri se poate ajunge din camera (1,1) în camera (n,m).

Deoarece numărul de posibilități poate fi foarte mare, se cere doar restul acestui număr la împărțirea cu 9901.

Se consideră un triunghi de numere naturale format din n linii.Prima linie conține un număr, a doua linie conține 2 numere, etc. ultima linie n, conține n numere. În acest triunghi se pot calcula diverse sume cu n elemente, astfel:

  • termenul i al sumei se află pe linia i din triunghi
  • pentru un anumit termen al sumei, termenul următor se află pe linia următoare și pe aceeași coloană, sau pe coloana imediat următoare spre dreapta.

Să se determine cea mai mare sumă care se poate obține în acest mod.

Se consideră un triunghi de numere naturale format din n linii.Prima linie conține un număr, a doua linie conține 2 numere, etc. ultima linie n, conține n numere. În acest triunghi se pot calcula diverse sume cu n elemente, astfel:

  • termenul i al sumei se află pe linia i din triunghi
  • pentru un anumit termen al sumei, termenul următor se află pe linia următoare și pe aceeași coloană, sau pe coloana imediat următoare spre dreapta.

Să se determine cea mai mică sumă care se poate obține în acest mod și numerele care o alcătuiesc.

Harta jocului PacmMan este sub forma unui dreptunghi împărțit în camere organizate pe linii și coloane. Din fiecare cameră se poate merge în camera situate pe coloana următoare și pe aceeași linie, sau in camera de pe coloana următoare și linia următoare, dar fără a ieși din hartă. Astfel din camera (i,j) se poate merge în camerele (i,j+1) și (i+1,j+1). PacMan se află în camera situată pe prima linie și pe prima coloana (1,1) și trebuie să ajungă în camera de pe ultima linie și ultima coloană (n,m). Calculați și afișați numărul de trasee pe care poate PacMan să parcurgă harta.