#1041
Pentru un număr natural nenul n
, să considerăm toate numerele naturale nenule mai mici sau egale cu n
, luând fiecare număr de câte două ori: 1, 1, 2, 2, 3, 3, ... , n, n
. Aceste numere le amestecăm aleator, şi le aranjăm pe două linii a câte n
elemente. Structura astfel obţinută o vom numi o bipermutare. În figurile 1, 2 şi 3 avem câte un exemplu de bipermutare pentru n=5
.
O bipermutare este perfectă, dacă ambele linii ale structurii reprezintă câte o permutare (vezi figurile 2 şi 3).
Prin mutare pe poziţia p
, înţelegem interschimbarea elementelor de pe aceeaşi coloană p
. În exemplele de mai jos, bipermutarea perfectă din figura 2 s-a obţinut din bipermutarea din figura 1, aplicând o mutare pe poziţa 2
. Bipermutarea perfectă din figura 3 s-a obţinut din bipermutarea din figura 1, aplicând mutări pe poziţiile 1
, 2
, 4
şi 5
.
Cunoscând o bipermutare, determinaţi:
OJI 2013, clasele XI-XII
ID | Utilizator | Problema | Data încărcării | Stare | ||
---|---|---|---|---|---|---|
Biperm | 10 Octombrie 2022, 19:57 | Evaluare finalizată | 100 |