Soluții trimise

Rezumat problemă

AXYZ

#1615

Se consideră numerele naturale A (format din două sau trei cifre, toate distincte și nenule) și X (format din N cifre, toate nenule).

Din numărul X, folosind toate cele N cifre ale sale, se poate construi un cel mai mare număr natural Y strict mai mic decât X. De exemplu, pentru X=121621 se construiește Y=121612.

Tot din numărul X, se poate obține numărul A prin ștergerea unor cifre din scrierea lui X și alipirea celor rămase, fără a le schimba ordinea. De exemplu, dacă X=121621 și A=12, există Z=3 posibilități distincte prin care să obținem numărul A din X și anume: 1) 121621; 2) 121621; 3) 121621.

Cunoscându-se numerele A, N și cele N cifre ale lui X, să se determine:

1. cel mai mare număr natural Y, strict mai mic decât X, care se poate obține rearanjând cifrele lui X;
2. numărul maxim Z de posibilități distincte prin care se poate obține numărul A din numărul X prin ștergerea unor cifre și alipirea celor rămase, fără a le schimba ordinea.

ID   Utilizator Problema Data încărcării Stare
ISolv3Problems 22 (iSolv3Problems) AXYZ 10 Octombrie 2022, 21:07 Evaluare finalizată 100
Du-te sus!