Soluții trimise

Rezumat problemă

Se consideră N intervale [Ai,Bi], 1 ≤ i ≤ N disjuncte.

Tuturor intervalelor li se aplică o operație de extindere la ambele capete cu o valoare naturală x, astfel încât după extindere cu valoarea x, intervalul [Ai,Bi] va deveni intervalul [Ai-x,Bi+x], 1 ≤ i ≤ N.

După extindere, spunem că intervalele [Ai,Bi] și [Aj,Bj] aparțin aceluiași grup de intervale dacă ele se intersectează sau dacă există un interval [Ak,Bk] astfel încât [Ai,Bi] se intersectează cu [Ak,Bk] iar intervalele [Ak,Bk], [Aj,Bj] aparțin aceluiași grup de intervale.

Să se determine valoarea minimă x cu care vor trebui să fie extinse toate intervalele astfel încât să se formeze un grup cu cel puțin P intervale.

Lot Juniori, Deva, 2013

ID   Utilizator Problema Data încărcării Stare
ISolv3Problems 22 (iSolv3Problems) Intervale3 10 Octombrie 2022, 18:53 Evaluare finalizată 100
Du-te sus!