Lista de probleme 493

Filtrare

Dificultate

Operații intrare/ieșire


Etichete

#3011 lastk

Se dă un șir a[1], a[2], …, a[n] de numere naturale și un număr natural k. Să se determine cele mai mari k numere din șir.

#2751 BBsecurity C++

Se dă un număr n și n triplete de forma l, c, h, reprezentând lungimea egala a doi stâlpi, lungimea cablului dintre acestea și înălțimea la care atârnă cablul față de podea.

Se cere să se afle distanța dintre fiecare doi stâlpi.

#2534 Bogdan

Bogdan și Ionuț au fost prieteni încă din clasa V, dar acum destinele lor se cam despart…. Pentru a-l consola pe Bogdan, Ionuț i-a făcut o problema cadou. Bogdan nu vrea să-l dezamăgească pe Ionut, așa că vă cere ajutorul pentru a
rezolva problema împreuna.

Se consideră un triunghi de numere naturale format din n linii.Prima linie conține un număr, a doua linie conține 2 numere, etc. ultima linie n, conține n numere. În acest triunghi se pot calcula diverse sume cu n elemente, astfel:

  • termenul i al sumei se află pe linia i din triunghi
  • pentru un anumit termen al sumei, termenul următor se află pe linia următoare și pe aceeași coloană, sau pe coloana imediat următoare spre dreapta.

Să se determine cea mai mare sumă care se poate obține în acest mod.

Se dă lista arcelor unui graf orientat. Să se determine nodurile care au gradul exterior egal cu gradul interior.

Se dă un șir cu n numere întregi. Determinați cel mai mare număr care poate fi scris ca produs de două elemente ale șirului.

#19 BFS

Se consideră un graf neorientat cu n vârfuri și m muchii și un vârf cunoscut X. Să se afişeze vârfurile vizitate în urma parcurgerii în lățime a grafului pornind din vârful X.

#2338 skipass

La un parc de sporturi de iarnă au venit G grupuri de schiori numerotate de la 1 la G. Aceștia coboară pe
una dintre cele 2 pârtii disponibile dar urcă cu același teleschi. Teleschiul folosește T-bar-uri, o modalitate eficientă de a urca schiorii pe vârful pârtiei.

Un T-bar poate trage maxim 2 schiori odată. Deoarece sunt 2 pârtii, se formează 2 rânduri de oameni de-o parte și de alta a punctului de urcare în teleschi. Se știe că 2 schiori nu vor folosi același T-bar decât dacă fac parte din același grup. De asemenea, niciun schior nu se baga în fața altuia (toți sunt foarte corecți și răbdători). Atunci când un T-bar sosește, primul om de la una dintre cozi se urcă în el și pleacă sau așteaptă să se
urce încă cineva (din același grup cu el). Acest al doilea schior trebuie sa fie totuși primul de la coada lui (nimeni nu se bagă în față).

Care este numărul minim de T-bar-uri ce trebuie folosite astfel încât toți schiorii de la ambele rânduri să ajungă în vârful pârtiei?

Cu n numere naturale, \( a_1, a_2,… , a_n \), se pot calcula următoarele sume:
\( S_1 = a_1 + a_2 + … + a_n \)
\( S_2 = a_1 \cdot a_2 + a_1 \cdot a_3 + … + a_{n-1} \cdot a_n \)
\( S_3 = a_1 \cdot a_2 \cdot a_3 + a_1 \cdot a_2 \cdot a_4 + … + a_{n-2} \cdot a_{n-1} \cdot a_n \)
...
\( S_n = a_1 \cdot a_2 \cdot … \cdot a_n \).

Se dau două numere \(n\) și \(k\) și apoi n numere naturale \( a_1, a_2,… , a_n \). Se cere să se calculeze suma \( S_k \).

Înțelepciunea populară

#2725 aib

Aveți la dispoziție un număr natural nenul n și o permutare a = (a[1], a[2], ..., a[n]) a mulțimii {1, 2, ..., n}. Pentru fiecare număr a[i] trebuie să determinați câte numere mai mici decât a[i] se află la stânga sa, adică în secvența a[1], a[2], ..., a[i-1].