Lista de probleme 2

Avem o matrice de dimensiuni N x M, cu elemente 0 și 1. Numim segment o secvență de cel puțin două valori 1 aflate una lângă alta, toate pe aceeași linie, sau toate pe aceeași coloană a matricei. Se cere determinarea numărului de perechi de segmente:
1. aflate pe linii distincte ale matricei;
2. aflate pe coloane distincte ale matricei;

Gigel, pasionat de numere, știe că orice număr natural se scrie într-o bază de numerație b ca o succesiune de simboluri care au asociate valori de la 0 la b-1. De exemplu numărul 7, scris în baza 10, se scrie în baza 2 ca 111(2), iar numărul 26732, scris în baza 10, se scrie în baza 37 ca o succesiune de 3 simboluri, primele două având asociată valoarea 19, iar ultimul având asociată valoarea 18. El a descoperit că există numere care au proprietatea că se scriu, în exact două baze diferite, prin exact trei simboluri identice. De exemplu, numărul 931(10) se scrie în baza 11 ca 777(11), iar în baza 30 se scrie 111(30). Fiind dat un număr natural N, să se determine cel mai mare număr natural mai mic sau egal cu N, care are proprietatea că se scrie în exact două baze diferite prin exact 3 simboluri identice.
1. Să se scrie numărul determinat
2. Să se scrie cele două baze determinate și valorile simbolurilor respective.