Lista de probleme 2

#1643 Tromino

Bulbuka a primit de curând cadou un infinit de tromino-uri în formă de L. După ce s-a jucat un timp cu ele, a ajuns la următoarea concluzie: poate să acopere cu tromino-uri o tablă de dimensiuni 2Kx2K aproape complet (mai puţin un pătrăţel de dimensiune 1x1). Deşteapta de Bulbuka are un algoritm pentru asta: porneşte de la o configuraţie 2K-1x2K-1, o copiază de încă 3 ori, apoi roteşte 2 dintre copii şi la sfârşit, adaugă un tromino la mijloc (v-a făcut un desen mai jos, ca să înţelegeţi mai bine, pentru K = 1, 2 şi 3). Pornind de la o configuraţie de acest tip, ea a observat că poate roti la 90o câte un tromino, în sensul acelor de ceasornic sau invers, doar dacă după rotire încape înapoi pe tablă. Folosind astfel de rotaţii, pătrăţelul lipsă poate ajunge pe orice poziţie de pe tablă.

Bulbuka vă pune acum Q întrebări de tipul: care este numărul minim de rotaţii necesare pentru ca pătrăţelul lipsă să ajungă de la coordonatele (SR,SC) la coordonatele (FR,FC)?

Urmasii lui Moisil, 2016