Lista de probleme 2

#1027 Cool

Se consideră un șir A format din N elemente naturale nenule. Numim secvență de lungime K a șirului A orice succesiune de elemente consecutive din șir de forma Ai, Ai+1 ,…, Ai+K-1.

O secvență o numim secvență cool dacă elementele care o compun sunt distincte și pot fi rearanjate astfel încât să alcătuiască o secvență continuă de numere consecutive.
De exemplu, considerând șirul A=(3,1,6,8,4,5,6,7,4,3,4), atunci secvența (8,4,5,6,7) este o secvență cool deoarece conține elemente distincte ce pot fi rearanjate astfel încât să alcătuiască șirul de numere consecutive 4,5,6,7,8, pe când secvențele (4,3,4), (6,7,4,3) nu sunt considerate secvențe cool.

Fiind dat un şir de N numere naturale nenule se cer următoarele:
1. Pentru o valoare dată K să se verifice dacă secvența A1, A2 ,…, AK este secvență cool. Dacă secvența este cool, atunci se va afișa cea mai mare valoare ce aparține secvenței. Dacă secvența nu este cool, atunci se va afișa numărul elementelor distincte din secvența A1, A2 ,…, AK , adică numărul elementelor care apar o singură dată.
2. Lungimea maximă a unei secvențe cool și numărul secvențelor cool de lungime maximă.

Suprafața plană a unei mese de pseudo-biliard este formată din n x n celule pătratice cu lungimea laturii egală cu 1 (o unitate), lipite, dispuse pe n linii numerotate de la 1 la n și n coloane, numerotate de la 1 la n. Pe masă se așează K bile, fiecare bilă găsindu-se în centrul unei anumite celule a mesei. Un jucător dorește să plaseze pe suprafața mesei un cadru pătratic având lungimea diagonalei egală cu D unități.

El trebuie să răspundă la m întrebări de forma: x y. Fiecare întrebare are semnificația: câte bile se găsesc în interiorul sau pe laturile cadrului ?

Cadrul se plasează astfel încât fiecare colț să fie poziționat în centrul unei celule, colțurile opuse să se găsească pe aceeași coloană, respectiv pe aceeași linie, iar colțul “de sus” să fie plasat în centrul celulei aflată pe linia x și coloana y.

Cunoscând lungimea n a laturilor mesei, numărul m de întrebări, numărul K de bile așezate pe masă, pozițiile lor și lungimea D a diagonalei cadrului pătratic, se cere:
1. Numărul de celule care se vor găsi în întregime în interiorul cadrului, dacă acesta se așează pe suprafața mesei, conform descrierii de mai sus.
2. Câte un răspuns pentru fiecare dintre cele m întrebări.