Lista de probleme 2

Nivelul concursului: Județean

Grupe

Clasa VIII-a Clasa a X-a

Etichete

#3566 Templu

Copa ajunse în Orintia unde există un templu cu mai multe nivele, baza fiind un pătrat de lungime L. Primul nivel are înălţimea egală cu N, iar celelalte nivele au înălţimea mai mare cu o unitate faţă de cel anterior. Spre exemplu pentru L = 5 şi N = 3 din stâncă răsări templul (imagine din avion şi de la sol):

3 3 3 3 3
3 4 4 4 3
3 4 5 4 3
3 4 4 4 3
3 3 3 3 3

5
4 4 4
3 3 3 3 3
Copa deschise un document vechi şi citi: „Ca să afli cât aur este în templu, trebuie să însumezi numărul de metri de pe fiecare orizontală…”. Şi Copa socoti: 3 + 3 + 3 + 3 + 3 = 15 ; 3 + 4 + 4 + 4 + 3 = 18 ; 3 + 4 + 5 + 4 + 3 = 19 ; celelalte 18 şi 15. „Apoi, trebuie să afli suma numerelor obţinute…”. Iar Copa îşi notă numărul 85. „Toate numerele obţinute se lipesc pentru a forma cel mai mic număr posibil…”. Şi Copa obţinu numărul: 151518181985 . „Din numărul acesta se caută cel mai mare număr de două cifre alăturate. Aceasta este cantitatea de aur din templu.”. Şi Copa ţipă de bucurie: 98!.

Plecaţi în Orintia! Veţi primi cele două numere N şi L şi vi se cere să determinaţi numărul obţinut din sume şi cantitatea de aur.

#3118 TortO

Un tort dreptunghiular de dimensiuni MxN trebuie împărţit în porţii pătrate de aceeaşi mărime. Găsiţi numărul minim de porţii care se pot obţine şi dimensiunea L a acestora. Atât dimensiunile dreptunghiului cât şi ale pătratelor în care se împarte sunt numere întregi.