Lista de probleme 10

Filtrare

Dificultate

Operații intrare/ieșire

Se dă un număr N și un număr S. Să se determine câte numere de N cifre au suma cifrelor S.

#1991 Trepte2

O persoana are de urcat n trepte. Ştiind că de pe treapta i poate trece pe treapta i + 1, i + 2, ..., i + (k - 1) sau i + k, aflaţi în câte moduri poate urca cele n trepte. (inițial este pe treapta 1)

Se consideră un număr natural nenul N. Vom considera mulțimea A(N) a numerelor de N cifre nenule care au proprietatea că orice două cifre alăturate sunt de parități diferite. De exemplu 1472 este un număr din mulțimea A(4), dar 1567 nu este pentru că are cifrele alăturate 1 și 5 de aceeași paritate. Să se determine numărul de elemente ale mulțimii A(N). Pentru că acest număr poate fi foarte mare, se va determina modulo 30103.

Se consideră un număr natural nenul N. Să se determine numărul de cuvinte de lungime N formate doar din litere mici și cu proprietatea că nu pot exista trei litere alăturate identice. Pentru că acest număr poate fi foarte mare, se va determina modulo 777013.

Se consideră o clădire de formă dreptunghiulară formată din n*m camere, dispuse pe n linii și m coloane. Intrarea în clădire este în camera de coordonate (1,1), iar ieșirea în camera de coordonate (n,m). Din orice cameră (i,j) se poate ajunge numai în camerele (i+1,j) sau (i,j+1). Determinați în câte moduri se poate ajunge din camera (1,1) în camera (n,m). Deoarece numărul de posibilități poate fi foarte mare, se cere doar restul acestui număr la împărțirea cu 9901.

Se consideră o clădire de formă dreptunghiulară formată din n*m camere, dispuse pe n linii și m coloane. Unele camere sunt închise, accesul în ele fiind imposibil. Intrarea în clădire este în camera de coordonate (1,1), iar ieșirea în camera de coordonate (n,m). Din orice cameră (i,j) se poate ajunge numai în camerele (i+1,j) sau (i,j+1), dacă aceasta nu este închisă.

Determinați în câte moduri se poate ajunge din camera (1,1) în camera (n,m). Deoarece numărul de posibilități poate fi foarte mare, se cere doar restul acestui număr la împărțirea cu 9901.

#1824 Pitic

Carmen, piticul de gradina vrea sa meargă în vizita la piticul Tulosba. Pentru a ajunge la Tulosba, Carmen trebuie sa meargă printr-o rețea de N galerii, fiecare alcătuită din M sectoare.

Rețeaua poate fi reprezentată printr-un tablou cu N linii, numerotate de la 1 la N și M coloane, numerotate de la 1 la N. Carmen ocupă sectorul 1 al galeriei 1. Tulosba ocupă sectorul M al galeriei 1.

La galeria n se termina rețeaua și începe gradina unde sunt niște copii răi care vor sa-l spargă pe Carmen cu bâtele de Baseball.

Dacă sectorul curent a lui Carmen este (i,j), atunci se poate deplasa:

  • La dreapta, ajungând în sectorul (i,j+1) .
  • Pe diagonala la dreapta în sus, ajungând în sectorul (i+1,j+1).
  • Pe diagonala la dreapta în jos, ajungând în sectorul (j+1,i-1) .

Sa se afișeze în câte moduri poate Carmen sa ajungă la Tulosba.

#2408 divtrei

Se consideră numerele naturale N şi K şi cifrele nenule distincte c[1], c[2], …, c[N]. Să se determine câte numere de K cifre formate doar cu cifrele c[1], c[2], …, c[N] sunt divizibile cu 3. Pentru că acest număr poate fi foarte mare, rezultatul se va determina modulo 4001.

Se dau două numere naturale N şi K. Determinaţi numărul de şiruri de lungime N formate doar din semnele + şi şi în care nu apar K semne pe poziţii consecutive.

Toată lumea cunoaște modelul de deblocare a telefoanelor sub formă de o matrice cu 3 linii și 3 coloane. Se pot trasa diferite modele de deblocare având un număr N de puncte prin care trecem, din fiecare punct putând merge la oricare vecin al lui. (Sunt maximum 8 vecini de exemplu pentru punctul din mijloc și 3 vecini pentru un punct din colț).

Determinați câte variante de modele sunt posibile trecând prin N puncte. Deoarece numărul poate fi foarte mare, se va afișa numărul de variante modulo 1000003.

Balcaniada de Informatică 2018, ziua de antrenament