Lista de probleme 32

Filtrare

Dificultate

Operații intrare/ieșire


Etichete

Să se scrie un program care citeşte cel mult 1.000.000 de numere naturale din intervalul închis [0,9] şi determină cel mai mare număr prim citit şi numărul său de apariţii.

Vasilica şi Viorica au primit cadou de la moşul un joc cu n jetoane pe care sunt scrise nişte numere. Cerinţa jocului este să afle dacă se pot alege câteva jetoane astfel încât produsul numerelor să fie 2020.

Se dau n numere naturale. Să se determine cel mai mare număr perfect mai mic sau egal cu 8128 care poate fi scris ca produs al unora dintre numerele date. Un număr natural este perfect dacă dublul său este egal cu suma divizorilor săi.

Se dau mai multe numere naturale formate din exact o cifră. Determinaţi cifrele cu număr maxim de apariţii.

#2843 Puteri6

Se dă un număr natural n (1≤n≤106 ), și un șir cu cel mult 1000000 de elemente, numere naturale de forma 10p (0≤p≤9). Se cere să se afișeze numărul care ar apărea pe poziția n în șirul ordonat crescător. Dacă șirul are mai puțin de n termeni, se afișează mesajul Nu exista.

Aky, un elev pasionat de matematică, analiza într-o zi curios o matrice pătratică de dimensiune N. Acesta a observat că această matrice are anumite submatrice, la rândul lor pătratice, ale căror elemente sunt egale. Astfel și-a pus o întrebare: pentru o matrice dată, care este submatricea pătratică de dimensiune maximă a acesteia cu toate elementele egale pe care o pot obține, știind că am voie să schimb valoarea a maxim K elemente din matricea dată cu orice valoare consider. Acesta ar rezolva problema de unul singur, dar este ocupat chiar acum deci vă cere vouă ajutorul!

#1010 produs

Se dau două șiruri cu câte n, respectiv m elemente. Dacă înmulțim fiecare element din primul șir cu fiecare element din al doilea șir, să se afle câte produse sunt mai mici decât p.

Se dă un şir cu n elemente, numere naturale. Să se verifice dacă reprezintă o permutare a mulţimii {1,2,...,n}.

#3465 jocprim

Aky și Alex joacă un joc interesant. Acesta se desfășoară în felul următor: aceștia au cartonașe cu numere naturale până la 10.000.000 (se consideră că au un număr infinit de cartonașe pentru fiecare număr natural mai mic sau egal cu 10.000.000). Ei aleg la întâmplare n cartonașe din cele date, iar pentru fiecare număr x de pe un cartonaș ales caută cartonașul pe care se află scris cel mai mare divizor prim al numărului x.

Astfel observă că pentru multe din numerele alese cel mai mare divizor prim coincide, deci se hotărăsc să creeze mai multe perechi de cartonașe astfel: primul cartonaș al perechii va fi un număr prim, P, care este cel mai mare divizor prim al cel puțin unuia dintre numerele alese, iar numărul C de pe al doilea cartonaș reprezintă pentru câte din numerele din șirul numerelor alese numărul de pe primul cartonaș este cel mai mare divizor prim. De asemenea, perechile sunt ordonate crescător după P.

Cei doi băieți nu se descurcă singuri când numerele de pe cartonașe sunt foarte mari, deci vă roagă pe voi să realizați un program care să realizeze afișarea numarului de perechi formate precum și a acestora pentru un șir de n cartonașe alese.