Lista de probleme 5

#1103 Harta

Pe baza unei imagini preluate din satelit, se realizează harta unei mici localități. Localitatea ocupă o suprafață dreptunghiulară, cu laturile orientate pe direcțiile Nord-Sud, respectiv Est-Vest. Studiind imaginea obținută de la satelit, cartografii au constatat că toate cele k clădiri au forma unor dreptunghiuri distincte. Imaginea poate fi reprezentată sub forma unui tablou cu n•m celule așezate pe n linii numerotate de la 1 la n și m coloane numerotate de la 1 la m.

Numim drum, un dreptunghi al tabloului care străbate întreaga localitate pe direcția Est-Vest și are un număr maxim de linii sau un dreptunghi care străbate întreaga localitate pe direcția Nord-Sud și are un număr maxim de coloane. Drumurile, evident, nu trebuie să treacă prin clădiri.

Cartografii sunt interesați ca pe această hartă să fie reprezentate la scară doar clădirile, nu și drumurile. De aceea, pentru realizarea hărții, lățimile drumurilor au fost reduse la o singură celulă

Tabloul care reprezintă imaginea localității se codifică astfel: 1 pentru o celulă ocupată de o clădire și 0 pentru o celulă neocupată.

Cunoscând n, m și k, precum și tabloul care codifică imaginea, se cere să se determine:

1. Numărul S de celule ocupate de către clădirea pătratică cu latura maximă și numărul de clădiri C alese dintre celelalte k – 1 clădiri, cu proprietatea că fiecare dintre ele “încape” în interiorul clădirii pătratice cu latură maximă, fără să se suprapună peste celulele marginale ale acesteia.
2. Tabloul care reprezintă harta, în urma prelucrării imaginii inițiale.

#1107 Reflex

La un concurs de robotică, în timpul prezentării, un roboţel cu corp cilindric cu diametrul de o unitate scapă de sub control şi se deplasează într-un ring de formă dreptunghiulară. Ringul este împărţit în N x M pătrate identice, cu latura de o unitate, aşezate pe N linii şi M coloane.

Robotul poate părăsi ringul numai pe la colţuri, acestea fiind numerotate de la 1 la 4, colţul cu numărul 1 fiind cel din stânga jos apoi restul fiind numerotate în sens trigonometric. Suprafaţa ringului este delimitată de exterior prin intermediul a patru pereţi despărţitori: doi pereţi “verticali” (aşezaţi de la colţul 1 la colţul 4, respectiv de la colţul 2 la colţul 3) şi doi pereţi “orizontali” (aşezaţi de la colţul 1 la colţul 2, respectiv de la colţul 3 la colţul 4), fără a bloca ieşirile, ca în desenul alăturat.

Robotul pătrunde în ring prin colţul cu numărul 1 sub un unghi de 45 grade şi cu o viteză de un pătrat/s. Ciocnirile cu pereţii sunt considerate perfect elastice (robotul nu-şi pierde din viteză) iar unghiul de incidenţă este egal cu cel de reflexie.

Se cere să se determine:

a) după câte secunde şi prin ce colţ al ringului va ieşi robotul;
b) de câte ori se ciocneşte robotul de pereţii orizontali şi verticali, rezultând o schimbare de direcţie, până la ieşirea din ring.

ONI 2014, Clasa a IX-a

#1104 qvect

Se consideră N vectori cu elemente întregi, numerotați de la 1 la N, sortați crescător, fiecare vector având un număr precizat de elemente.

Să se răspundă la Q întrebări de tipul:
a) 1 i j, cu semnificaţia: care este minimul dintre modulele diferențelor oricăror două elemente, primul element aparținând vectorului numerotat cu i, iar cel de al doilea element aparținând vectorului numerotat cu j ?
b) 2 i j, cu semnificația: care este valoarea ce se găsește pe poziția mediană în vectorul obținut prin interclasarea vectorilor având numerele de ordine i,i+1,…,j (i<j).

#1105 TG

Fie un număr natural N. Spunem că (a, b, c) este un triplet geometric limitat de N, dacă a, b și c sunt trei numere naturale astfel încât 1 ≤ a < b < c ≤ N și \( b = \sqrt {a \cdot c} \).

Să se determine numărul tripletelor geometrice limitate de numărul natural N.

Să se determine un șir strict crescător, cu lungimea N, format din numere naturale nenule, \( 1 ≤ a_1 < a_2 < a_3 < … < a_N ≤ [2 \cdot N \cdot \sqrt{N}] \), cu proprietatea că oricare trei termeni distincți ai șirului nu sunt în progresie aritmetică, adică pentru oricare numere naturale i, j şi k cu 1 ≤ i < j < k ≤ N, este îndeplinită condiţia: \( a_i + a_j \neq 2 \cdot a_j \). Prin [x] s-a notat partea întreagă a lui x.

De exemplu, pentru N = 5, cel mai mare termen al șirului va trebui să fie mai mic sau egal cu \( [2 \cdot 5 \cdot \sqrt{5} ] \), adică aN ≤ 22, deci o soluție este: 1, 2, 4, 5, 10.

ONI 2014, Clasa a IX-a