Lista de probleme 30

#2301 secv

Se consideră două numerele naturale K și S și un șir de N numere naturale a[1], a[2],…, a[N]. O secvenţă de lungime K este un subşir format din K elemente aflate pe poziţii consecutive în şir: a[i], a[i+1],.., a[i+k-1]. Parcurgând șirul de la stânga la dreapta, începând cu primul element, se elimină prima secvență de lungime K, cu suma elementelor strict mai mare decât numărul S. În urma ștergerii șirul va avea N-K elemente: a[1], a[2],…, a[N-K]. Operația de ștergere continuă după aceleași reguli până când nu mai există secvențe care pot fi eliminate.

Să se scrie un program care citind numerele N, K, S și cele N elemente din șir rezolvă cerințele:
1) Determină numărul secvențelor care se vor elimina respectând condiția din enunț.
2) Considerând că în șirul citit nu sunt posibile eliminări de secvențe conform condiției din enunț, programul determină numărul de elemente ai din șir cu proprietatea următoare: ștergerea lui a[i] conduce la obținerea unui șir în care se mai poate elimina cel puțin o secvență de K elemente cu sumă strict mai mare ca S.

În vremuri străvechi Pământul era locuit de către o civilizaţie neobişnuită condusă după reguli matematice foarte riguroase. Această civilizaţie era formată din mai multe oraşe-stat asemeni oraşelor antice. Fiecare oraş s-a dezvoltat treptat pornind de la un singur cartier de formă pătrată cu suprafaţa de un hectar, în jurul căruia se adăugau în fiecare an cartiere de câte un hectar fiecare în felul următor: în primul an s-a format cartierul iniţial, în al doilea an oraşul s-a extins formând patru noi cartiere în toate cele patru puncte cardinale, în anul următor oraşul s-a extins cu 8 noi cartiere dispuse în jurul cartierelor deja formate, şi aşa mai departe, în fiecare an oraşul extinzându-se cu încă un rând de cartiere.

Primul an Al doilea an Al treilea an Al patrulea an Al cincilea an

Extinderea unui oraş se opreşte când întâlnește un alt oraş sau dacă, deşi nu a întâlnit încă un alt oraş, ajunge la marginea hărţii pe oricare dintre cele patru puncte cardinale. Două oraşe se întâlnesc când suprafeţele ocupate de ele ajung să se atingă sau între cartierele marginale ale celor două orașe se mai află doar un hectar.

Situaţii în care suprafeţele orașelor se ating Situaţii în care între suprafeţele orașelor există un spaţiu de un hectar

Cerințe:

  1. Dimensiunea suprafeţei (în hectare) pe care ar ocupa-o după t ani, dacă nu ar întâlni nici un alt oraş şi nici nu ar ajunge la marginea hărţii.
  2. Timpul scurs până când toate cele N oraşe şi-au încetat extinderea, începută din cartierele iniţiale ale căror coordonate se citesc din fişier, şi aria suprafeţei din hartă rămasă neocupată, exprimată în hectare.

ONI 2016, clasa a IX-a

#1673 Cmmdc1

Fie un șir de numere naturale nenule a[1], a[2], …, a[n] și un număr natural k. Să se determine un grup de k numere din șir care au proprietatea că cel mai mare divizor comun al lor este maxim. Dacă există mai multe astfel de grupuri, se cere acel grup pentru care suma elementelor este maximă.

ONI 2016, clasa a IX-a

#1685 Dif2

Sandu a studiat la ora de informatică mai multe aplicații cu vectori de numere naturale, iar acum are de rezolvat o problemă interesantă. Se dă un șir X=(X[1],X[2],…,X[n]) de numere naturale nenule și două numere naturale p1 și p2, unde p1<p2. Sandu trebuie să construiască un nou șir Y=(Y[1],Y[2],…,Y[n*n]) cu n*n elemente obținute din toate produsele de câte două elemente din șirul X (fiecare element din șirul Y este de forma X[i]*X[j], 1<=i, j<=n). Sandu are de calculat două valori naturale d1 și d2 obținute din șirul Y. Valoarea d1 este egală cu diferența maximă posibilă dintre două valori ale șirului Y. Pentru a obține valoarea d2, Sandu trebuie să considere că șirul Y are elementele ordonate descrescător iar d2 va fi diferența dintre valorile aflate pe pozițiile p1 și p2 în șirul ordonat descrescător. Sandu a găsit rapid valorile d1 și d2 și, pentru a le verifica, vă roagă să le determinați și voi.

Dându-se șirul X cu n elemente și valorile p1 și p2, determinați valorile d1 și d2.

ONI 2016, clasa a IX-a

#1686 Leduri

Am un cablu cu N leduri (numerotate de la 1 la N) aşezate echidistant. Inițial, unele leduri sunt aprinse, iar altele sunt stinse. Ledurile sunt legate între ele astfel încât atingerea fiecărui led produce modificarea atât a stării lui, cât şi a ledurilor vecine lui. Deci, dacă se atinge ledul i (2≤i≤N-1) atunci se modifică stările ledurilor i-1, i și i+1. Dacă se atinge ledul 1, atunci se modifică stările ledurilor 1 și 2, iar dacă se atinge ledul N, atunci se modifică stările ledurilor N-1 și N. Vreau să modific starea ledurilor astfel încât să semene cu cablul cu N leduri pe care îl are Ionuț, prietenul meu (două cabluri seamănă dacă pentru orice i=1..N stările ledurilor de pe poziția i sunt identice).

Cunoscând cum arată cablul lui Ionuț, ajutați-mă să determin numărul minim de atingeri ale unor leduri astfel încât cablul meu să arate ca și cablul lui Ionuț.

#1687 Omogene

Se consideră o matrice cu L linii și C coloane care memorează doar valori din mulțimea {0,1,2}. O submatrice nevidă (formată din cel puțin o linie și cel puțin o coloană) a acestei matrice o numim omogenă dacă numărul valorilor de 0 este egal cu numărul de valori de 1 și egal cu numărul valorilor de 2.

Să se determine câte submatrice nevide omogene există.

Un grup de N cercetași, numerotați de la 1 la N, se află în tabără la munte. Pentru ei, organizatorii au pregătit N scaune, de asemenea numerotate de la 1 la N, așezate în cerc, astfel încât fiecare cercetaș să aibă locul său (locul cercetașului i este pe scaunul i, 1≤i≤N).

Pentru desfășurarea următoarei activități, organizatorii au decis ca M dintre cercetași să prezinte diferite exerciții. Numărul M este egal cu cea mai mare putere a lui 2 cu proprietatea că numărul N de cercetași aflați în tabără se poate scrie ca sumă de M numere consecutive în mulțimea numerelor impare. Cei M cercetași care vor prezenta sunt cei numerotați cu numerele impare consecutive a căror sumă este N. De exemplu, dacă N=8, atunci M este 2, iar exercițiile vor fi prezentate de cercetașii numerotați cu 3, respectiv cu 5.

Din joacă, micii cercetași s-au așezat pe scaune la întâmplare. Organizatorii au nevoie pentru a desfășura activitatea ca cel puțin cei M cercetași care vor prezenta exercițiile să se afle pe locurile lor. Pentru aceasta, o parte dintre cercetași trebuie să-și schimbe locul și organizatorii invită micii cercetași să participe la jocul numit ”Mutare”. Acest joc se desfășoară astfel: unul dintre cercetașii care nu se află pe locul lor se ridică și merge în interiorul cercului. Cercetașul numerotat cu numărul scaunului rămas liber își va ocupa locul, iar locul ocupat de el anterior rămâne astfel liber. Jocul continuă până când scaunul cercetașului aflat în interiorul cercului se eliberează și el se așază pe locul său.

Fiind dat numărul N, precum și ordinea în care s-au așezat cercetașii pe scaunele numerotate de la 1 la N, scrieți un program care să determine:

  • numărul M de cercetaşi care vor prezenta exerciţii în cadrul activităţii;
  • numerele de identificare ale celor M cercetaşi care vor prezenta exerciţiile, în ordine strict crescătoare;
  • numărul minim de cercetași care își vor schimba locul, astfel încât toţi cei M cercetași care vor prezenta exercițiile să se afle pe locurile lor.

ONI 2016, clasa a VIII-a

#1674 Livada1

Fermierul Quinto are o livadă plină cu pomi fructiferi. Livada are N rânduri, numerotate de la 1 la N, pe fiecare rând aflându-se câte M pomi fructiferi, numerotaţi de la 1 la M. Livada lui Quinto este una specială, aşa că pentru unii pomi se cunoaşte cantitatea de fructe (exprimată în kg) care poate fi culeasă, iar pentru alţii aceasta poate fi determinată pe baza unei formule. Quinto şi-a propus să recolteze C kg de fructe din pomii aflaţi în livada lui. Acesta foloseşte un utilaj modern pentru culesul fructelor. Utilajul poate fi folosit pe oricare din rândurile livezii, dar poate aduna doar fructele dintr-un şir consecutiv de pomi, începând cu primul pom de pe rândul respectiv, neavând posibilitatea de a culege parţial fructele dintr-un pom. Preocupat de frumuseţea livezii sale, Quinto s-a gândit la restricţii suplimentare pentru recoltarea cantităţii C de fructe. Astfel, el doreşte să adune fructele din pomi de pe maximum R rânduri diferite, pentru ca N-R rânduri să rămână complete. De asemenea, el doreşte să culeagă cu prioritate pomii care au o cantitate cât mai mică de fructe, pentru ca în livadă să rămână cei mai roditori pomi. Quinto şi-a dat seama că este dificil să culeagă fix C kg de fructe, prin urmare este mulţumit şi cu o cantitate mai mare, care respectă celelalte condiţii impuse de el.

Determinaţi cea mai mică valoare X posibilă astfel încât să se poată culege, în condițiile de mai sus, o cantitate de cel puțin C kg de fructe și orice pom din care se culeg fructe să conțină cel mult X kg de fructe.

#1699 Robotel

Tudor a primit un joc educaţional numit “Roboţel” cu ajutorul căruia va învăţa punctele cardinale Nord, Est, Sud, Vest. Jocul constă dintr-un roboţel care se deplasează pe o tablă de forma unei matrici pătratice, împărţită în R linii şi R coloane. Fiecare căsuţă, aflată la intersecţia dintre o linie şi o coloană, este fie căsuță „liberă”, fie căsuță „semnalizator”, caz în care este etichetată cu una din literele N, E, S, V, reprezentând 4 sensuri posibile de deplasare. Când roboțelul ajunge într-o „căsuţă semnalizator”, el îşi schimbă sensul de deplasare astfel:

  • Dacă căsuţa este etichetată cu N atunci roboţelul se va deplasa în continuare de jos în sus;
  • Dacă căsuţa este etichetată cu E atunci roboţelul se va deplasa în continuare de la stânga la dreapta;
  • Dacă căsuţa este etichetată cu S atunci roboţelul se va deplasa în continuare de sus în jos;
  • Dacă căsuţa este etichetată cu V atunci roboţelul se va deplasa în continuare de la dreapta la stânga.

Două căsuțe semnalizator formează o pereche „blocantă” dacă:

  • Se află pe aceeași linie și conțin literele E și V, căsuța cu E are coloana mai mică decât a celei etichetate cu V și între ele, pe aceeași linie nu există alte căsuțe semnalizatoare.
  • Se află pe aceeași coloană și conțin literele S și N, căsuța cu S are linia mai mică decât a celei etichetate cu N și între ele, pe aceeași coloană nu există alte căsuțe semnalizatoare.

În figura 1, de exemplu, sunt 2 perechi blocante: Perechea (1,2) (5.2) și perechea (2,3) (2,5).

Roboţelul porneşte din căsuţa (1,1), aflată pe prima linie și prima coloană şi dacă aceasta este liberă, se deplasează, în cadrul primei linii, de la stânga la dreapta. În cazul în care căsuța de pornire (1,1) este semnalizator, atunci roboțelul se va deplasa pe direcția indicată de litera cu care este etichetată. Considerând că roboțelul se deplasează pe tablă, el se oprește doar în următoarele situații:

  • Roboţelul intră într-o căsuţă liberă aflată pe prima sau ultima linie, respectiv prima sau ultima coloană, caz în care dacă s-ar menține sensul deplasării actuale roboțelul ar părăsi tabla;
  • Roboțelul intră într-o „căsuţă semnalizator” a unei perechi blocantă și se va opri în cealaltă căsuță a perechii.

De exemplu, în Figura 2, roboțelul ajunge în căsuța liberă (3,5) unde se oprește. În Figura 3, roboțelul se va opri în căsuța (4,1) deoarece dacă ar schimba sensul spre Est, ar reveni în ultima căsuță semnalizator vizitată, (4,3).
Roboțelul înaintează o căsuță într-un pas, în sensul de deplasare.

Scrieţi un program care, cunoscând numărul R de linii şi coloane și cele K căsuţe semnalizator, determină:

  1. Toate perechile blocante de pe tablă;
  2. Numărul de pași efectuați pe fiecare sens în parte: Nord, Est, Sud și Vest

Pietrele preţioase au fascinat omenirea încă din timpuri străvechi iar cele mai renumite dintre ele, cristalele, au devenit atât simbolul durităţii cât şi al eternităţii. În urma unui studiu ştiinţific, pe un eşantion de formă dreptunghiulară se pot observa diferite tipuri de molecule, dispuse într-o geometrie perfectă, pe M rânduri a câte N molecule fiecare, aliniate una lângă alta. O formaţiune cristalizabilă este alcătuită din 3 molecule de acelaşi tip, învecinate două câte două, având una dintre cele patru forme din imaginea alăturată (fig.1).

Fiecare formaţiune este înconjurată de jur-împrejur, ca în fig.2, de un înveliş special format şi el din molecule identice, de alt tip decât cele din formaţiunea cristalizabilă pe care o înconjoară şi o izolează de restul formaţiunilor moleculare. În acest fel, fiecare moleculă din formaţiunea cristalizabilă se învecinează la Nord, Sud, Est şi Vest cu o moleculă din aceeaşi formaţiune cristalizabilă sau cu o moleculă din învelişul special.

Fiecare formaţiune cristalizabilă se bombardează cu raze X şi în acest fel are loc cristalizarea, proces prin care învelişul special se extinde peste formaţiunea cristalizabilă pe care o înconjoară, formând o singură structură din care se va dezvolta cristalul.

Cerințe

  1. Determinaţi numărul formaţiunilor cristalizabile ce pot fi identificate pe eşantionul analizat.
  2. Afişaţi eşantionul rezultat după cristalizare.