Lista de probleme 6

În vremuri străvechi Pământul era locuit de către o civilizaţie neobişnuită condusă după reguli matematice foarte riguroase. Această civilizaţie era formată din mai multe oraşe-stat asemeni oraşelor antice. Fiecare oraş s-a dezvoltat treptat pornind de la un singur cartier de formă pătrată cu suprafaţa de un hectar, în jurul căruia se adăugau în fiecare an cartiere de câte un hectar fiecare în felul următor: în primul an s-a format cartierul iniţial, în al doilea an oraşul s-a extins formând patru noi cartiere în toate cele patru puncte cardinale, în anul următor oraşul s-a extins cu 8 noi cartiere dispuse în jurul cartierelor deja formate, şi aşa mai departe, în fiecare an oraşul extinzându-se cu încă un rând de cartiere.

Primul an Al doilea an Al treilea an Al patrulea an Al cincilea an

Extinderea unui oraş se opreşte când întâlnește un alt oraş sau dacă, deşi nu a întâlnit încă un alt oraş, ajunge la marginea hărţii pe oricare dintre cele patru puncte cardinale. Două oraşe se întâlnesc când suprafeţele ocupate de ele ajung să se atingă sau între cartierele marginale ale celor două orașe se mai află doar un hectar.

Situaţii în care suprafeţele orașelor se ating Situaţii în care între suprafeţele orașelor există un spaţiu de un hectar

Cerințe:

  1. Dimensiunea suprafeţei (în hectare) pe care ar ocupa-o după t ani, dacă nu ar întâlni nici un alt oraş şi nici nu ar ajunge la marginea hărţii.
  2. Timpul scurs până când toate cele N oraşe şi-au încetat extinderea, începută din cartierele iniţiale ale căror coordonate se citesc din fişier, şi aria suprafeţei din hartă rămasă neocupată, exprimată în hectare.

ONI 2016, clasa a IX-a

#1673 Cmmdc1

Fie un șir de numere naturale nenule a[1], a[2], …, a[n] și un număr natural k. Să se determine un grup de k numere din șir care au proprietatea că cel mai mare divizor comun al lor este maxim. Dacă există mai multe astfel de grupuri, se cere acel grup pentru care suma elementelor este maximă.

ONI 2016, clasa a IX-a

#1685 Dif2

Sandu a studiat la ora de informatică mai multe aplicații cu vectori de numere naturale, iar acum are de rezolvat o problemă interesantă. Se dă un șir X=(X[1],X[2],…,X[n]) de numere naturale nenule și două numere naturale p1 și p2, unde p1<p2. Sandu trebuie să construiască un nou șir Y=(Y[1],Y[2],…,Y[n*n]) cu n*n elemente obținute din toate produsele de câte două elemente din șirul X (fiecare element din șirul Y este de forma X[i]*X[j], 1<=i, j<=n). Sandu are de calculat două valori naturale d1 și d2 obținute din șirul Y. Valoarea d1 este egală cu diferența maximă posibilă dintre două valori ale șirului Y. Pentru a obține valoarea d2, Sandu trebuie să considere că șirul Y are elementele ordonate descrescător iar d2 va fi diferența dintre valorile aflate pe pozițiile p1 și p2 în șirul ordonat descrescător. Sandu a găsit rapid valorile d1 și d2 și, pentru a le verifica, vă roagă să le determinați și voi.

Dându-se șirul X cu n elemente și valorile p1 și p2, determinați valorile d1 și d2.

ONI 2016, clasa a IX-a

#1686 Leduri

Am un cablu cu N leduri (numerotate de la 1 la N) aşezate echidistant. Inițial, unele leduri sunt aprinse, iar altele sunt stinse. Ledurile sunt legate între ele astfel încât atingerea fiecărui led produce modificarea atât a stării lui, cât şi a ledurilor vecine lui. Deci, dacă se atinge ledul i (2≤i≤N-1) atunci se modifică stările ledurilor i-1, i și i+1. Dacă se atinge ledul 1, atunci se modifică stările ledurilor 1 și 2, iar dacă se atinge ledul N, atunci se modifică stările ledurilor N-1 și N. Vreau să modific starea ledurilor astfel încât să semene cu cablul cu N leduri pe care îl are Ionuț, prietenul meu (două cabluri seamănă dacă pentru orice i=1..N stările ledurilor de pe poziția i sunt identice).

Cunoscând cum arată cablul lui Ionuț, ajutați-mă să determin numărul minim de atingeri ale unor leduri astfel încât cablul meu să arate ca și cablul lui Ionuț.

#1687 Omogene

Se consideră o matrice cu L linii și C coloane care memorează doar valori din mulțimea {0,1,2}. O submatrice nevidă (formată din cel puțin o linie și cel puțin o coloană) a acestei matrice o numim omogenă dacă numărul valorilor de 0 este egal cu numărul de valori de 1 și egal cu numărul valorilor de 2.

Să se determine câte submatrice nevide omogene există.

#1674 Livada1

Fermierul Quinto are o livadă plină cu pomi fructiferi. Livada are N rânduri, numerotate de la 1 la N, pe fiecare rând aflându-se câte M pomi fructiferi, numerotaţi de la 1 la M. Livada lui Quinto este una specială, aşa că pentru unii pomi se cunoaşte cantitatea de fructe (exprimată în kg) care poate fi culeasă, iar pentru alţii aceasta poate fi determinată pe baza unei formule. Quinto şi-a propus să recolteze C kg de fructe din pomii aflaţi în livada lui. Acesta foloseşte un utilaj modern pentru culesul fructelor. Utilajul poate fi folosit pe oricare din rândurile livezii, dar poate aduna doar fructele dintr-un şir consecutiv de pomi, începând cu primul pom de pe rândul respectiv, neavând posibilitatea de a culege parţial fructele dintr-un pom. Preocupat de frumuseţea livezii sale, Quinto s-a gândit la restricţii suplimentare pentru recoltarea cantităţii C de fructe. Astfel, el doreşte să adune fructele din pomi de pe maximum R rânduri diferite, pentru ca N-R rânduri să rămână complete. De asemenea, el doreşte să culeagă cu prioritate pomii care au o cantitate cât mai mică de fructe, pentru ca în livadă să rămână cei mai roditori pomi. Quinto şi-a dat seama că este dificil să culeagă fix C kg de fructe, prin urmare este mulţumit şi cu o cantitate mai mare, care respectă celelalte condiţii impuse de el.

Determinaţi cea mai mică valoare X posibilă astfel încât să se poată culege, în condițiile de mai sus, o cantitate de cel puțin C kg de fructe și orice pom din care se culeg fructe să conțină cel mult X kg de fructe.