Lista de probleme 48

Filtrare

Dificultate

Operații intrare/ieșire


Etichete

#3321 Stone

Peste 3700 de ani lumea a devenit dreptunghiulară, este formată n x m zone și este stăpânită de un rege care are o armată formată din q soldați. În regat se află k turnuri de piatră, ostile armatei regelui, la coordonate cunoscute; fiecare turn atacă zonele de pe linia și coloana sa.

Regele dorește să afle în câte moduri poate plasa soldații în zonele fără turnuri ale regatului astfel încât aceștia să nu fie atacați de turnuri.

#1128 jucarii

La o grădiniță, cei m copii de la grupa mică s-au trezit în fața a n jucării diferite. Cel mai isteț dintre ei vă întreabă în câte moduri ar putea să-și aleagă fiecare câte o jucărie ?

Într-o clasă sunt n elevi. În fiecare zi elevii sunt așezați în bănci în alt mod. Câte modalități de așezare a elevilor în bănci există?

Să se determine numărul submulțimilor cu k elemente ale unei mulțimi cu n elemente.

Se dau numerele naturale n și k. Calculați \( C_n^k \).

Se dă un cuvânt format numai din litere mici ale alfabetului englez. Determinați câte cuvinte distincte se pot forma cu literele sale – numărul de anagrame ale sale.

Să se determine numărul de șiruri de lungime 2 * n care conțin paranteze închise corect.

#2917 Catalan

Numerele lui Catalan formează un șir cunoscut în combinatorică. Termenul general al acestui șir este:

$$ C_n = C_{2n}^{n} – C_{2n}^{n+1} = \frac{1}{n+1}\cdot C_{2n}^{n} = \prod _{k=2}^{n} \frac{n+k}{k}, \text{pentru } n ≥ 0 $$

Se dă numărul natural n. Să se determine și să se afișeze al n-lea număr Catalan.

Se dă un triunghi de numere. Deduceți regula după care a fost format si afișați al n-lea sir al acestui triunghi.

Pentru o mulţime cu n elemente naturale să se afle câte submulţimi nevide au suma elementelor pară.