Lista de probleme

#722 Cifru

Alibaba trebuie să descopere cifrul care deschide cufărul cu comoara cea mare. Cifrul este foarte greu de găsit. El a descoperit mai multe pietre, fiecare piatră având o altă culoare, pe fiecare piatră fiind scris un număr natural cu cel mult 4 cifre. Alibaba observă că numerele de pe fiecare piatră sunt distincte două câte două. Regula după care se formează cifrul este una foarte simplă, şi Alibaba a reuşit să o obţină destul de uşor: cifrul este format din alăturarea într-o anumită ordine a tuturor pietrelor. Ceea ce Alibaba mai ştie este că pe poziţia p din cifru se găseşte cu siguranţă cifra k.

Scrieţi un program care determină numărul de variante de cifruri pe care va trebui să le încerce Alibaba. Numărul fiind foarte mare se va calcula modulo 46337.

Lot Juniori, Focsani, 2010

În câte moduri putem aranja numerele de la 1 la n astfel încât numerele pare să fie situate pe poziții impare iar cele impare pe poziții pare ?

Ilinca este o fetiţă căreia îi place foarte mult să deseneze; ea a făcut multe desene pe care le-a numerotat de la 1 la d şi apoi le-a multiplicat (toate copiile poartă acelaşi număr ca şi originalul după care au fost făcute). În vacanţă s-a hotărât să-şi deschidă propria expoziţie pe gardul bunicilor care are mai multe scânduri; pe fiecare scândură ea aşează o planşă (un desen original sau o copie). Ilinca ţine foarte mult la desenele ei şi doreşte ca fiecare desen să apară de cel puţin k ori (folosind originalul şi copiile acestuia). Ilinca se întreabă în câte moduri ar putea aranja expoziţia. Două moduri de aranjare sunt considerate distincte dacă diferă cel puţin prin numărul unei planşe (de exemplu: 2 1 3 3 este aceeaşi expoziţie ca şi 2 3 1 3, dar este diferită de 2 1 3 1 şi de 1 3 3 1).

Cunoscând n numărul de scânduri din gard, d numărul desenelor originale şi k numărul minim de apariţii al fiecărui desen, să se determine în câte moduri poate fi aranjată expoziţia, ştiind că Ilinca are la dispoziţie oricâte copii doreşte.

OJI 2010, Clasa a X-a

#1128 jucarii

La o grădiniță, cei m copii de la grupa mică s-au trezit în fața a n jucării diferite. Cel mai isteț dintre ei vă întreabă în câte moduri ar putea să-și aleagă fiecare câte o jucărie ?

Se dă n un număr natural nenul. Să se afle câte soluții are ecuația x1+x2+...+xn=0 în mulțimea {-1,0,1}.

Cei m cowboys și cei n aliens s-au întâlnit în vestul sălbatic și, păstrând tradiția locului, s-au așezat în șir indian. Cum cowboys erau gazde primitoare și în special foarte precaute, s-au gândit că între doi cowboys consecutivi ar fi bine să fie cel mult un alien (din motive de securitate). De asemenea primul și ultimul din șir să fie cawboys. Dilema care s-a ivit a fost numărul de moduri în care s-ar putea așeza în șir indian ținând cont de condițiile de securitate impuse.

Să se determine numărul de șiruri de lungime 2 * n care conțin paranteze închise corect.

Se dă un triunghi de numere. Deduceți regula după care a fost format si afișați al n-lea sir al acestui triunghi.

Fie N și T două numere naturale.

Să se determine numărul soluțiilor diferite S, ale ecuației \( x_1 \cdot x_2 \cdot \cdots \cdot x_N = T \), în mulțimea numerelor naturale.

Lot Juniori Focsani, 2016

După zile întregi de muncă, vrăjitorul Arpsod a terminat de confecționat noua sa baghetă magică, cea mai puternică de până acum. Ca să o testeze, el s-a gândit la următorul antrenament: își va lua K ținte miscătoare și se va apuca să tragă în ele cu cea mai puternică vrajă a lui, “Blatus Blast”. Fiind o magie foarte solicitantă, vrăjitorul a hotărat că va trage doar de N ori. Arpsod este un trăgător extraordinar, astfel fiecare din cele N lovituri va nimeri exact una din cele K ținte. Într-o sesiune de N lovituri, unele ținte pot fi lovite de mai multe ori iar altele niciodată. Vrăjitorul consideră că sesiunea de antrenament este reușită numai dacă fiecare țintă a fost lovită CEL PUȚIN O DATĂ.

În timp ce se odihnește pentru următoarea sesiune de antrenament, ca să mai treacă timpul, a început să numere în câte moduri ar fi putut lovi țintele astfel încât sesiunea de antrenament să fie una reușită.

Curioși din fire, v-ați apucat și voi să numărați dar, văzând că numărul modalităților devine prea mare, ați decis să vă mulțumiți cu restul împărțirii acestui număr la 666013.

Concursul EMPOWERSOFT, 2016