Lista de probleme 29

Etichete

Zedd a descoperit frumusețea aplicațiilor din domeniul criptografiei. Astfel, el și-a activat abilitățile de hacker și s-a lovit de următoarea problemă: fiind dat un șir format doar din litere mici ale alfabetului englez, Zedd trebuie să găsească secvențe pe care le poate forma fără ca vreo literă să apară de prea multe ori.
Cunoscând textul lui Zedd, să se determine:

  • Numărul de secvențe distincte în care fiecare literă poate să apară de maximum k ori. Două secvențe sunt considerate distincte dacă diferă fie prin poziția de început, fie prin cea de final.
  • Cea mai lungă secvență care conține doar litere distincte. Dacă sunt mai multe secvențe de lungime maximă formate din litere distincte se alege prima din punct de vedere lexicografic (alfabetic).

#3068 roata1

Cei N elevi participanți la olimpiadă au fost invitați să admire panorama orașului din roata cu N locuri instalată în Orășelul Copiilor. Fiecare elev poartă un tricou inscripționat cu un număr natural, numerele de pe tricouri fiind diferite două câte două și având valori cuprinse între 1 și N. Inițial, ei ocupă toate cele N locuri din roată, începând cu cel mai de jos scaun și continuând cu următoarele scaune, în sensul acelor de ceasornic. Roata se mișcă circular, în sensul acelor de ceasornic, cu un număr de poziții, se oprește și elevul aflat pe scaunul cel mai de jos coboară. În continuare, ea se rotește în același sens, un număr mai mare de poziții, apoi se oprește și coboară elevul aflat pe scaunul cel mai de jos și așa mai departe până când coboară toți elevii.
Cunoscându-se numărul N de elevi, precum și numerele de pe tricouri, în ordinea în care elevii se află inițial în roată, să se determine N numere reprezentând pozițiile cu care roata se mișcă circular pentru a coborî fiecare elev, astfel încât elevii să coboare din roată în ordinea crescătoare a numerelor de pe tricou. Cele N numere de poziții trebuie să fie în ordine strict crescătoare, iar numărul total de poziții trebuie să fie minim.

#3067 optime

Maria iubește numerele prime. Ea scrie pe o foaie de hârtie, în ordine strict crescătoare, un șir format din numerele prime care au cel puțin două cifre. Apoi, din numerele care conțin mai mult de două cifre taie cifrele din stânga, astfel încât să rămână exact două cifre. Dacă după tăierea cifrelor numărul obținut nu este cuprins între 10 și 99, numărul este eliminat din șir. De exemplu, numărul prim 101, care are trei cifre, nu va fi scris, deoarece i se taie cifra din stânga, rezultând numărul 01, adică 1, care nu are exact două cifre, deci după tăiere va fi eliminat din șir.
Maria umple un tabel cu 2 * k linii și k coloane, astfel încât, parcurgându-l pe linii, de sus în jos și fiecare linie de la stânga la dreapta, se obțin numerele din șir. Studiind numerele din tabel, constată că printre acestea se află și numere care nu sunt prime. Cunoscând un număr natural k nenul și un număr natural x, ajutați-o pe Maria:
1. Să determine suma numerelor din tabel care nu sunt prime. Dacă nu există numere care nu sunt prime, suma are valoarea 0.
2. Să aleagă x coloane consecutive din tabel, astfel încât acestea să conțină, în total, un număr maxim de numere prime. Dacă există mai multe posibilități, se va alege secvența de coloane consecutive care are o valoare cât mai mare a coloanei de început din secvență. Să se determine numărul primei coloane din secvența aleasă, precum și numărul total de numere prime din secvență.

#3065 trio

Trio este un joc ce conține N piese de aceeași formă, așezate una lângă alta pe o tablă de joc și numerotate de la stânga la dreapta cu valori de la 1 la N. Fiecare piesă are marcate pe ea trei zone, iar în fiecare dintre ele este scrisă câte o cifră. Se consideră că o piesă pe care sunt scrise în ordine, de la stânga la dreapta, cifrele C1, C2 și C3 are următoarele proprietăți:

  • este identică cu o altă piesă, dacă această piesă conține exact aceleași cifre, în aceeași ordine cu ale ei sau în ordine inversă. Astfel, piesa C1|C2|C3 este identică cu o altă piesă de forma C1|C2|C3 și cu o piesă de forma C3|C2|C1.
  • este prietenă cu o altă piesă dacă aceasta conține exact aceleași cifre ca piesa dată, dar nu neapărat în aceeași ordine. Astfel, piesa C1|C2|C3 este prietenă cu piesele: C1|C2|C3, C1|C3|C2, C2|C1|C3, C2|C3|C1, C3|C1|C2 și C3|C2|C1. Se observă că două piese identice sunt și prietene!
    Un grup de piese prietene este format din TOATE piesele prietene între ele, aflate pe tabla de joc.
    1) Alegeți o piesă de pe tabla de joc, astfel încât numărul M al pieselor identice cu ea să fie cel mai mare posibil și afișați numărul M determinat;
    2) Afișați numărul grupurilor de piese prietene existente pe tabla de joc;
    3) Afișați numărul maxim de piese dintr-o secvență ce conține piese așezate una lângă alta pe tabla de joc, pentru care prima piesă și ultima piesă din secvență sunt prietene.

Fie șirul Fibonacci dat prin F1 = 1, F2 = 1 și relația de recurență Fk = Fk-1 + Fk-2, k ≥ 3. Se consideră un număr natural N. Să se scrie un program care determină numărul F al fracțiilor diferite ireductibile subunitare, ce se pot forma utilizând primii N termeni ai șirului Fibonacci.

#3046 telefon

Dorel, plictisit de puzzle-ul pe care l-a upgradat ieri, a decis să meargă afară cu ceilalți copii.
El îi privește pe cei N copii cum joacă “telefonul fără fir”.
Jocul decurge în felul următor:

  • Inițial, copiii se așază pe axa Ox, copilul i la distanța Xi metri față de origine.
  • Copilul cel mai aproape de origine alege un cuvânt secret și îl transmite celui din dreapta lui; cel din dreapta lui îl transmite următorului și așa mai departe până se ajunge la ultimul copil.

1. Care este durata minimă a jocului, dacă Dorel nu ia parte la joc?
2. Care este durata minimă a jocului, dacă Dorel ia parte la joc și se poziționează în mod optim pentru a minimiza durata jocului?

ONI 2019 clasa a IX-a

#3045 pro3

Se consideră 3 progresii aritmetice de numere naturale nenule. Notăm cu Pi, 1 ≤ i ≤ 3, mulțimile formate cu elementele progresiei i. Fie P = P1 \( \bigcup \) P2 \( \bigcup \) P3 reuniunea mulțimilor P1, P2, P3. Să se determine cardinalul mulțimii P.

ONI 2019 clasa a IX-a

#3044 comun1

Tocmai ai primit un șir v de K numere naturale nenule distincte. Plecând de la acest șir, te-ai gândit să construiești un șir w de N numere naturale distincte, astfel încât un număr x este în șirul w dacă și numai dacă exista inițial în șirul v sau se pot alege cel puțin două numere din șirul v astfel încât x este cel mai mare divizor comun al acelor numere. De exemplu, dacă v = {4, 6, 7} atunci w = {1, 2, 4, 6, 7}. Uimit de proprietățile matematice frumoase ale noului șir w, ai uitat din păcate șirul original v de la care ai pornit. Dându-se șirul w, să se găsească un șir posibil inițial v având un număr minim de elemente.

#3043 cub3

Ionel are de rezolvat o nouă problemă. El trebuie să construiască un șir de N numere naturale. Numerele din șir pot avea ca divizori primi doar numere prime de o cifră. După construirea șirului, Ionel a constatat că există subsecvențe în șir pentru care produsul elementelor este cubul unui număr natural. Ionel vrea să determine numărul subsecvențelor din șirul construit care au produsul elementelor o valoare ce este cubul unui număr natural.

#3042 amat

Pasionat de informatică și de puzzle-uri, Dorel a construit o matrice A de dimensiunea N × M lipind mai multe piese dreptunghiulare de diferite dimensiuni. Fiecare piesă este compusă din elemente de dimensiunea 1 × 1 și rețin o aceeași valoare. Matricea rezultată nu are spații libere, iar piesele din care este compusă nu se suprapun. Nu există două piese cu aceeași valoare.
Deși inițial părea că acest design este unul inedit, nu a durat mult până când Dorel s-a plictisit. Astfel, acum el dorește să “upgradeze” matricea construită. Dorel alege o submatrice delimitată de coordonatele (x1,y1) – colțul stânga-sus, (x2,y2) – colțul dreapta-jos (1 ≤ x1 ≤ x2 ≤ N, 1 ≤ y1 ≤ y2 ≤ M), unde crește toate valorile elementelor submatricei cu valoarea V.
Dorel efectuează în ordine Q operații de upgrade, operații numerotate de la 1 la Q. La finalizarea celor Q operații de upgrade, toate elementele din matrice au valoarea mai mare sau egală cu K. După o operație de upgrade, structura inițială a matricei se modifică.
Cum priceperea lui Dorel este proverbială, trebuie să îl ajutați în rezolvarea următoarelor cerințe:
1) determinarea coordonatelor piesei cu număr maxim de elemente înainte ca Dorel să efectueze operațiile de upgrade;
2) determinarea numărului minim de operații de upgrade după care toate elementele matricei au valoarea mai mare sau egală cu K.