Lista de probleme 13

Filtrare

RAU-Gigel se gândește la un joc cu piesele de șah. El desenează o tablă de șah sub forma unei matrici pătratice de latură N și așează în fiecare dintre cele N x N celule câte o piesă de șah. Se consideră că dispune de N X N exemplare din fiecare piesă posibilă (regi, regine, ture, nebuni, cai, pioni), iar culoarea nu este relevantă. RAU-Gigel se întreabă care este numărul minim de căsuțe (celule) prin care trebuie să treacă un rege oarecare ca să ajungă la o regină oarecare. Regele se poate deplasa câte o celulă în patru direcții posibile: N, E, S, V.

Dar asta nu e tot. La începutul jocului, toți regii au 16 vieți. Atunci când RAU-Gigel mută un rege (oarecare) peste primul pion, acesta pierde o viață. Vestea bună este că, după aceea, regele respectiv poate lua oricâți pioni fără ca numărul său de vieți să fie afectat. Când ia un cal, regele pierde două vieți, dar după aceea poate lua, fără pierderi, oricâți cai. La fel se întâmplă și în cazul nebunilor, primul nebun îl costa patru vieți și, respectiv al turelor, care îl costă opt vieți.

RAU-Gigel dorește să afle ce rege să aleagă și pe ce traseu trebuie să meargă acesta către o regină oarecare, astfel încât la sfârșitul jocului să îi rămână cât mai multe vieți, iar traseul să fie cât mai scurt.

Se dă N și Q, apoi Q interogări de tipul K X pentru fiecare interogare să se afișeze separate prin spațiu ( ficare interogare pe un rând diferit ):

1. Câți vectori de exact N elemente din intervalul [0,2K) ( mai mari sau egale cu 0 și strict mai mici ca 2K ) există astfel încât valoarea a1 & a2 & ... & aN să fie X-frumoasă. Un număr este X-frumos dacă în reprezentare binară are exat X biți setați ( cu valoare = 1 ). Cu & am notat operația pe biți AND.

2. Câți vectori de exact N elemente din intervalul [0,2K) ( mai mari sau egale cu 0 și strict mai mici ca 2K ) există astfel încât valoarea a1 | a2 | ... | aN să fie X-frumoasă. Un număr este X-frumos dacă în reprezentare binară are exat X biți setați ( cu valoare = 1 ). Cu | am notat operația pe biți OR.

3.Câți vectori de exact N elemente din intervalul [0,2K) ( mai mari sau egale cu 0 și strict mai mici ca 2K ) există astfel încât valoarea a1 ^ a2 ^ ... ^ aN să fie X-frumoasă. Un număr este X-frumos dacă în reprezentare binară are exat X biți setați ( cu valoare = 1 ). Cu ^ am notat operația pe biți XOR.

Josephus este un matematician înrăit.
Într-o zi acesta se joacă cu primele N numere prime, când se decide să își construiască propiul său șir circular format din aceste numere. Pe prima poziție se va afla primul număr prim, adică 2, iar mai apoi se parcurge circular șirul din K în K, completându-se cu restul de numere prime, până la repartizarea tuturor.

Du-te sus!